Skip to main content

Quality evaluation of snow lotus (Saussurea): quantitative chemical analysis and antioxidant activity assessment


Snow lotus is commonly used as a medicinal plant and has great pharmacological value. To protect these endangered plants, in vitro propagation and cell cultures have been established in order to meet the growing market demand. The phenolic composition, antioxidant activities, total phenolic content (TPC) and total flavonoid content (TFC) from three most commonly used species, in vitro propagated lines and the cell cultures were investigated to qualify their pharmacological value. Quantitative analysis showed that the phenolics varied greatly among different species and the same species at different habitats. From this it can be inferred that the phenolics were influenced by genetic background and the environmental conditions. Significant correlations were observed between the antioxidant activity and several phenolics/TPC/TFC, suggesting that the phenolics are a major contributor of the antioxidant activity and are important for quality evaluation of snow lotus. Based on the abundance of phenolics, TPC, TFC and antioxidant activity, the order of the quality for wild species would be Saussurea involucrata > Saussurea medusa > Saussurea gossypiphora. For S. medusa, its quality judged by origin would be Shigatse > Lhasa > Nagqu. For in vitro propagated plants, the matured plants could be a reliable substitute for wild plants, and the dynamics of phenolics is critical for quality control of this monocarpic species. We provide the first report of quality comparison between the wild plants and the cell cultures. The advantages of developing cell cultures as alternatives for plants collected from the wild are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4



Ultra-performance liquid chromatography


High-performance liquid chromatography


2,2′-Azinobis (3-ethylbenzothiazoline-6-sulphonic acid)




6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid


Ferric reducing/antioxidant power


Trolox equivalent antioxidant capacity


Total phenolic content


Total flavonoid content


  • Arróniz-Crespo M, Núñez-Olivera E, Martínez-Abaigar J, Becker H, Scher J, Zapp J, Tomás R, Beaucourt N (2006) Physiological changes and UV protection in the aquatic liverwort Jungermannia exsertifolia subsp cordifolia along an altitudinal gradient of UV-B radiation. Funct Plant Biol 33:1025–1036

    Article  Google Scholar 

  • Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184

    CAS  Article  PubMed  Google Scholar 

  • Chen F, Yang Y, Zhao D, Gui Y, Guo Z (1999) Advances in studies of species, habitats distribution and chemical composition of snow lotuses (Saussurea) in China. Chin Bull Bot 16:561–566

    Google Scholar 

  • Cirak C, Radusiene J, Arslan B (2008) Variation of bioactive substances in Hypericum montbretii during plant growth. Nat Prod Res 22:246–252

    CAS  Article  PubMed  Google Scholar 

  • Dabaghi-Barbosa P, Rocha AM, Lima AFD, de Oliveira BH, de Oliveira MBM, Carnieri EGS, Cadena SMSC, Rocha MEM (2005) Hispidulin: antioxidant properties and effect on mitochondrial energy metabolism. Free Radic Res 39:1305–1315

    CAS  Article  PubMed  Google Scholar 

  • Dawa Z, Zhou Y, Bai Y, Gesang S, Bai B, Ding L (2008) Development of an HPLC-DAD-ESI-MS(n) method for quantitative analysis of Saussurea tridactyla. J Pharm Biomed Anal 48:1076–1081

    CAS  Article  PubMed  Google Scholar 

  • Fan C, Yue J (2003) Biologically active phenols from Saussurea medusa. Bioorg Med Chem 11:703–708

    CAS  Article  PubMed  Google Scholar 

  • Faria A, Oliveira J, Neves P, Gameiro P, Santos-Buelga C, de Freitas V, Mateus N (2005) Antioxidant properties of prepared blueberry (Vaccinium myrtillus) extracts. J Agric Food Chem 53:6896–6902

    CAS  Article  PubMed  Google Scholar 

  • Ferracane R, Graziani G, Gallo M, Fogliano V, Ritieni A (2010) Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. J Pharm Biomed Anal 51:399–404

    CAS  Article  PubMed  Google Scholar 

  • Fu LG (1992) China plant red data book: rare and endangered plants. Chinese Science Press, Beijing, pp 234–235

    Google Scholar 

  • Guo B, Gao M, Liu C (2007) In vitro propagation of an endangered medicinal plant Saussurea involucrata Karet Kir. Plant Cell Rep 26:261–265

    CAS  Article  PubMed  Google Scholar 

  • Jassim SAA, Naji MA (2003) Novel antiviral agents: a medicinal plant perspective. J Appl Microbiol 95:412–427

    CAS  Article  PubMed  Google Scholar 

  • Law W, Salick J (2005) Human-induced dwarfing of Himalayan snow lotus, Saussurea laniceps (Asteraceae). Proc Natl Acad Sci USA 102:10218–10220

    CAS  Article  PubMed  Google Scholar 

  • Li H, Wong C, Cheng K, Chen C (2008) Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT-Food Sci Technol 41:385–390

    CAS  Article  Google Scholar 

  • Li C, Du H, Wang L, Shu Q, Zheng Y, Xu Y, Zhang J, Zhang J, Yang R, Ge Y (2009) Flavonoid composition and antioxidant activity of tree peony (Paeonia section Moutan) yellow flowers. J Agric Food Chem 57:8496–8503

    CAS  Article  PubMed  Google Scholar 

  • Lin Y, Shi R, Wang X, Shen H (2008) Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets 8:634–646

    CAS  Article  PubMed  Google Scholar 

  • Matsuzaki Y, Koyama M, Hitomi T, Yokota T, Kawanaka M, Nishikawa A, Germain D, Sakai T (2008) Arctiin induces cell growth inhibition through the down-regulation of cyclin D1 expression. Oncol Rep 19:721–727

    CAS  PubMed  Google Scholar 

  • Nafisi S, Hashemi M, Rajabi M, Tajmir-Riahi HA (2008) DNA adducts with antioxidant flavonoids: morin, apigenin, and naringin. DNA Cell Biol 27:433–442

    CAS  Article  PubMed  Google Scholar 

  • Qiu L, Lian M, Ma Z, He G (1989) Studies on the components of Saussurea gossypiphora D. Don. Acta Bot Sin 31:398–401

    CAS  Google Scholar 

  • Scalzo J, Politi A, Pellegrini N, Mezzetti B, Battino M (2005) Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 21:207–213

    CAS  Article  PubMed  Google Scholar 

  • Slanina J, Paulova H, Humpa O, Bochorakova H, Taborska E (1999) 1,5-Dicaffeoylquinic acid, an antioxidant component of Cynara cardunculus leaves. Scripta Medica (Brno) 72:9–18

    CAS  Google Scholar 

  • Sloley B, Urichuk L, Tywin C, Coutts RT, Pang PK, Shan JJ (2001) Comparison of chemical components and antioxidant capacity of different Echinacea species. J Pharm Pharmacol 53:849–857

    CAS  Article  PubMed  Google Scholar 

  • Takasaki M, Konoshima T, Komatsu K, Tokuda H, Nishino H (2000) Anti-tumor-promoting activity of lignans from the aerial part of Saussurea medusa. Cancer Lett 158:53–59

    CAS  Article  PubMed  Google Scholar 

  • Teresita G, Alejandra ER, Américo OJ, Lilian EP (2001) Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Il Farmaco 56:683–687

    Article  Google Scholar 

  • The State Pharmacopoeia Commission of P. R. China (2005) The pharmacopoeia of the People’s Republic of China (vol. 1), Beijing, pp 36–37

  • Tomás-Barberán FA, Espín JC (2001) Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J Sci Food Agric 81:853–876

    Article  Google Scholar 

  • Tulipani S, Mezzetti B, Capocasa F, Bompadre S, Beekwilder J, De Vos CHR, Capanoglu E, Bovy A, Battino M (2008) Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes. J Agric Food Chem 56:696–704

    CAS  Article  PubMed  Google Scholar 

  • Vermerris W, Nicholson R (2006) Families of phenolic compounds and means of classification. In: Vermerris W, Nicholson R (eds) Phenolic compound biochemistry. Springer, Netherlands, p 2

    Google Scholar 

  • Way T, Lee J, Kuo D, Fan L, Huang C, Lin H, Shieh P, Kuo P, Liao C, Liu H, Kao J (2010) Inhibition of epidermal growth factor receptor signaling by Saussurea involucrata, a rare traditional Chinese medicinal herb, in human hormone-resistant prostate cancer PC-3 cells. J Agric Food Chem 58:3356–3365

    CAS  Article  PubMed  Google Scholar 

  • Wójcicki (1978) Effect of 1,5-dicaffeylquinic acid (cynarine) on cholesterol levels in serum and liver of acute ethanol-treated rats. Drug Alcohol Depend 3:143–145

    Article  PubMed  Google Scholar 

  • Yang B, Meng Z, Dong J, Yan L, Zou L, Tang Z, Dou G (2005) Metabolic profile of 1,5-dicaffeoylquinic acid in rats, an in vivo and in vitro study. Drug Metab Dispos 33:930–936

    CAS  Article  PubMed  Google Scholar 

  • Yang E, Kim S, Ku H, Lee D, Lee J, Kim Y, Seong Y, Song K (2010a) Syringin from stem bark of Fraxinus rhynchophylla protects Aβ (25–35)-induced toxicity in neuronal cells. Arch Pharm Res 33:531–538

    CAS  Article  PubMed  Google Scholar 

  • Yang J, Wang R, Liu L, Shi Y (2010b) Phytochemicals and biological activities of Saussurea species. J Asian Nat Prod Res 12:162–175

    Article  PubMed  Google Scholar 

  • Yi T, Chen H, Zhao Z, Jiang Z, Cai S, Wang T (2009a) Comparative analysis of the major constituents in the traditional Tibetan medicinal plants Saussurea laniceps and S medusa by LC-DAD-MS. Chromatographia 70:957–962

    CAS  Article  Google Scholar 

  • Yi T, Chen H, Zhao Z, Jiang Z, Cai S, Wang T (2009b) Identification and determination of the major constituents in the traditional Uighur medicinal plant Saussurea involucrata by LC-DAD-MS. Chromatographia 69:537–542

    CAS  Article  Google Scholar 

  • Yi T, Zhao Z, Yu Z, Chen H (2010) Comparison of the anti-inflammatory and anti-nociceptive effects of three medicinal plants known as “snow lotus” in the traditional Uighur and Tibetan medicines. J Ethnopharmacol 128:405–411

    Article  PubMed  Google Scholar 

  • Zhao D, Xing J, Li M, Lu D, Zhao Q (2001) Optimization of growth and jaceosidin production in callus and cell suspension cultures of Saussurea medusa. Plant Cell Tissue Organ Cult 67:227–234

    CAS  Article  Google Scholar 

  • Zhao D, Huang Y, Jin Z, Qu W, Lu D (2003) Effect of aggregate size in cell cultures of Saussurea medusa on cell growth and jaceosidin production. Plant Cell Rep 21:1129–1133

    CAS  Article  PubMed  Google Scholar 

  • Zhou J, Zhao J, Yuan H, Meng Y, Li Y, Wu L, Xue X (2007a) Comparison of UPLC and HPLC for determination of trans-10-hydroxy-2-decenoic acid content in royal jelly by ultra sound-assisted extraction with internal standard. Chromatographia 66:185–190

    CAS  Article  Google Scholar 

  • Zhou Z, Yin S, Wang X, Fan C, Li H, Yue J (2007b) Two new lignan glycosides from Saussurea laniceps. Helv Chim Acta 90:951–956

    CAS  Article  Google Scholar 

Download references


Identification of the wild snow lotus plants were done by Dr. Yilin Chen (Institute of Botany, Chinese Academy of Sciences, Beijing, China). Dr. Liansheng Wang (Institute of Botany, Chinese Academy of Sciences, Beijing) is acknowledged for his generous gift of the standards. Financial support was from the National Natural Science Foundation of China (No. 30472158) and the Chinese Academy of Sciences (No. KGCX2–YW–509).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Qiao Zhao or Dexiu Zhao.

Additional information

Communicated by P. Kumar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Qiu, J., Xue, X., Chen, F. et al. Quality evaluation of snow lotus (Saussurea): quantitative chemical analysis and antioxidant activity assessment. Plant Cell Rep 29, 1325–1337 (2010).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Phenolics
  • Flavonoid
  • Antioxidant activity
  • Snow lotus
  • Saussurea involucrata
  • Saussurea medusa
  • Saussurea gossypiphora
  • UPLC