Skip to main content
Log in

Cell wall alterations in the leaves of fusariosis-resistant and susceptible pineapple cultivars

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Fusariosis, caused by the fungus Fusarium subglutinans f. sp. ananas (Syn. F. guttiforme), is one of the main phytosanitary threats to pineapple (Ananas comosus var. comosus). Identification of plant cell responses to pathogens is important in understanding the plant–pathogen relationship and establishing strategies to improve and select resistant cultivars. Studies of the structural properties and phenolic content of cell walls in resistant (Vitoria) and susceptible (Perola) pineapple cultivars, related to resistance to the fungus, were performed. The non-chlorophyll base of physiologically mature leaves was inoculated with a conidia suspension. Analyses were performed post-inoculation by light, atomic force, scanning and transmission electron microscopy, and measurement of cell wall-bound phenolic compounds. Non-inoculated leaves were used as controls to define the constitutive tissue characteristics. Analyses indicated that morphological differences, such as cell wall thickness, cicatrization process and lignification, were related to resistance to the pathogen. Atomic force microscopy indicated a considerable difference in the mechanical properties of the resistant and susceptible cultivars, with more structural integrity, associated with higher levels of cell wall-bound phenolics, found in the resistant cultivar. p-Coumaric and ferulic acids were shown to be the major phenolics bound to the cell walls and were found in higher amounts in the resistant cultivar. Leaves of the resistant cultivar had reduced fungal penetration and a faster and more effective cicatrization response compared to the susceptible cultivar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bentes JLS, Matsuoka K (2005) Histology of Stennphylium solani and tomato interaction. Fitopatol Bras 30:224–231

    Google Scholar 

  • Butt H-J, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surface Sci Rep 59:1–15. doi:10.1016/j.surfrep.2005.08.003

    Article  CAS  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861. doi:10.1038/nrm1746

    Article  CAS  PubMed  Google Scholar 

  • de Ascensao ARFDC, Dubery IA (2003) Soluble and wall-bound phenolics polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f. sp. cubense. Phytochemistry 63:679–686. doi:10.1016/S0031-9422(03)00286-3

    Article  PubMed  Google Scholar 

  • Dianese JC (1981) Pathogenicity of epiphytic population of Fusarium moniliforme var. subglutinans pathogenic to pineapple. Phytopathology 71:1145–1149. doi:10.1094/Phyto-71-1145

    Article  Google Scholar 

  • Eynck C, Koopmann B, Karlovsky P, von Tiedemann A (2009) Internal resistance in winter oilseed rape inhibits systemic spread of the vascular pathogen Verticillium longisporum. Phytopathology 99(7):802–811. doi:10.1094/PHYTO-99-7-0802

    Article  CAS  PubMed  Google Scholar 

  • Gaboriaud F, Dufrêne YF (2007) Atomic force microscopy of microbial cells: application to nanomechanical properties, surface forces and molecular recognition forces. Colloids Surf B Biointerfaces 54:10–19. doi:10.1016/j.colsurfb.2006.09.014

    Article  CAS  PubMed  Google Scholar 

  • Hückelhoven R (2007) Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45:101–127. doi:10.1146/annurev.phyto.45.062806.094325

    Article  PubMed  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Kang Z, Zingen-Sell I, Buchenauer H (2005) Infection of wheat spikes by Fusarium avenaceum and alterations of cell wall components in the infected tissue. Eur J Plant Pathol 111(1):19–28. doi:10.1007/s10658-004-19839

    Article  Google Scholar 

  • Kavousi HR, Marashi H, Mozafari J, Bagheri AR (2009) Expression of phenylpropanoid pathway genes in chickpea defense against race 3 of Ascochyta rabiei. Plant Pathol J 8:127–132. doi:10.3923/ppj.2009.127.132

    Article  CAS  Google Scholar 

  • Kim KW, Hyun J-W, Park EW (2004) Cytology of cork layer formation of citrus and limited growth of Elsinoe fawcettii in scab lesions. Eur J Plant Pathol 110(2):129–138. doi:10.1023/B:EJPP.0000015330.21280.4c

    Article  Google Scholar 

  • Kim KW, Lee IJ, Thoungchaleun V, Kim CS, Lee DK, Park EW (2009) Visualization of wound periderm and hyphal profiles in pine stems inoculated with the pitch canker fungus Fusarium circinatum. Microsc Res Tech 72:965–973. doi:10.1002/jemt.20744

    Article  PubMed  Google Scholar 

  • Kováčik J, Klejdus B (2008) Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots. Plant Cell Rep 27:605–615. doi:10.1007/s00299-007-0490-9

    Article  PubMed  Google Scholar 

  • Kruger WM, Carver TLW, Zeyen RJT (2002) Effects of inhibiting phenolic biosynthesis on penetration resistance of barley isolines containing seven powdery mildew resistance genes or alleles. Physiol Mol Plant Pathol 61:41–51. doi:10.1006/pmpp.2002.0415

    CAS  Google Scholar 

  • Lesniewska E, Adrian M, Klinguerc A, Pugin A (2004) Cell wall modification in grapevine cells in response to UV stress investigated by atomic force microscopy. Ultramicroscopy 100:171–178. doi:10.1016/j.ultramic.2003.11.004

    Article  CAS  PubMed  Google Scholar 

  • Lewis NG, Yamamoto E (1990) Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol 41:455–496

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Xiao SY, Li ZG, Wang W, Du LJ (2007) Characterization of active phenolic components in the ethanolic extract of Ananas comosus L. leaves using high performance liquid chromatography with diode array detection and tandem mass spectrometry. J Chromatogr A 1165:39–44. doi:10.1016/j.chroma.2007.07.060

    Article  CAS  PubMed  Google Scholar 

  • Micic M, Benitez I, Ruano MM, Jeremic M, Radotic K, Moy V, Leblanc RM (2001) Probing the lignin nanomechanical properties and lignin–lignin interactions using the atomic force microscopy. Chem Phys Lett 347:41–45. doi:10.1016/S0009-2614(01)01022-3

    Article  CAS  Google Scholar 

  • Moore JP, Farrant JM, Lindsey GG, Brandt WF (2005) The South African and Namibian populations of the resurrection plant Myrothamnus flabellifolius are genetically distinct and display variation in their galloylquinic acid composition. J Chem Ecol 31(12):2823–2834. doi:10.1007/s10886-005-8396-x

    Article  CAS  PubMed  Google Scholar 

  • Quiroga M, Guerrero C, Botella MA, Bacelo A, Amaya I, Medina MI (2000) A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol 122:1119–1127

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues SP, Lindsey G, Fernandes PMB (2006) Biotechnological approaches to the control of plant viruses, chap 6. In: Thangadurai D et al (eds) Plant stress and biotechnology. Oxford Book Company, Jaipur

    Google Scholar 

  • Rodrigues SP, Andrade JS, Ventura JA, Lindsey G, Fernandes PMB (2009) Biotechnological approaches for plant viruses resistance. Braz Arch Biol Technol 52(4):795–808

    Article  CAS  Google Scholar 

  • Santos BA, Zambolim L, Ventura JA, Vale FXR (2002) Severidade de isolados de Fusarium subglutinans f. sp. ananas sensíveis e resistentes ao benomyl em abacaxizeiro. Fitopatol Bras 27:101–103. doi:10.1590/S0100-41582002000100018

    Google Scholar 

  • Silva MC, Várzea V, Guerra-Guimarães L, Azinheira HG, Fernandez D, Petitot A-S, Bertrand B, Lashermes P, Nicole M (2006) Coffee resistance to the main diseases: leaf rust and coffee berry disease. Braz J Plant Physiol 18:119–147. doi:10.1590/S1677-04202006000100010

    Article  CAS  Google Scholar 

  • Temsah M, Hanna L, Saad AT (2007) Histology of pathogenesis of pseudomonas savastanoi on Myrtus communis. J Plant Pathol 89(2):241–249

    Google Scholar 

  • Ventura JA (1994) Pineapple fusariosis: characterization of the pathogen, epidemiology of disease, resistance and micropropagation of host in vitro. Ph.D. thesis, Federal University of Viçosa. Viçosa, Minas Gerais

  • Ventura JA (2000) Taxonomia de Fusarium e seus segredos. Parte II: Chaves para identificação. Rev Annu Patol Plantas 102:303–338

    Google Scholar 

  • Ventura JA, Zambolim L (2002) Controle das Doenças do Abacaxizeiro. In: Zambolim L, Vale FXR, Monteiro AJA, Costa H (eds) Controle de Doenças de Plantas Fruteiras. UFV, Viçosa, pp 445–510

    Google Scholar 

  • Ventura JA, Cabral JRS, Matos AP, Costa H (2009) ‘Vitoria’: new pineapple cultivar resistant to fusariose. Acta Hortic Leuven 882:51–56

    Google Scholar 

  • Wally O, Jayaraj J, Punja Z (2009) Comparative resistance to foliar fungal pathogens in transgenic carrot plants expressing genes encoding for chitinase, β-1,3-glucanase and peroxidise. Eur J Plant Pathol 123:331–342. doi:10.1007/s10658-008-9370-6

    Article  CAS  Google Scholar 

  • Wuyts N, Lognay G, Verscheure M, Marlier M, de Waele D, Swennen R (2007) Potential physical and chemical barriers to infection by the burrowing nematode Radopholus similis in roots of susceptible and resistant banana (Musa spp.). Plant Pathol 56:878–890. doi:10.1111/j.1365-3059.2007.01607

    Article  CAS  Google Scholar 

  • Yang Y, Shah J, Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes Dev 11:1621–1639. doi:10.1101/gad.11.13.1621

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Giovana A. de Moraes and Beatriz F. Ribeiro for technical assistance with the electron microscopy and Paulo Moscon for technical assistance with the atomic force microscopy. This work was supported by Financiadora de Estudos e Projetos (FINEP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Banco do Nordeste do Brasil (BNB) and Fundação de Amparo à Pesquisa do Estado do Espírito Santo (FAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glória Maria de Farias Viégas Aquije.

Additional information

Communicated by P. Puigdomenech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Farias Viégas Aquije, G.M., Zorzal, P.B., Buss, D.S. et al. Cell wall alterations in the leaves of fusariosis-resistant and susceptible pineapple cultivars. Plant Cell Rep 29, 1109–1117 (2010). https://doi.org/10.1007/s00299-010-0894-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0894-9

Keywords

Navigation