Skip to main content
Log in

Analysis of the tip-to-base gradient of CaM in pollen tube pulsant growth using in vivo CaM–GFP system

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Ca2+-CaM signaling is involved in pollen tube development. However, the distribution and function of CaM and the downstream components of Ca2+-CaM signal in pollen tube development still need more exploration. Here we obtained the CaM–GFP fusion protein transgenic line of Nicotiana tobacum SRI, which allowed us to monitor CaM distribution pattern in vivo and provided a useful tool to observe CaM response to various exogenous stimulations and afforded solid evidences of the essential functions of CaM in pollen tube growth. CaM–GFP fusion gene was constructed under the control of Lat52-7 pollen-specific promoter and transformed into Nicotiana tobacum SRI. High level of CaM–GFP fluorescence was detected at the germinal pores and the tip-to-base gradient of fluorescence was observed in developing pollen tubes. The distribution of CaM at apical dome had close relationship with the pulsant growth mode of pollen tubes: when CaM aggregated at the apical dome, pollen tubes stepped into growth state; When CaM showed non-polarized distribution, pollen tubes stopped growing. In addition, after affording exogenous Ca2+, calmidazolium (antagonism of CaM) or Brefeldin A (an inhibitor of membrane trafficking), CaM turned to a uniform distribution at the apical dome and pollen tube growth was held back. Taken together, our results showed that CaM played a vital role in pollen tube elongation and growth rate, and the oscillation of tip-to-base gradient of CaM was required for the normal pulsant growth of pollen tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BFA:

Brefeldin A

BK:

Brewbaker and Kwack

CaM:

Calmodulin

CDPK:

Calcium dependent protein kinases

GFP:

Green fluorescent protein

References

  • Bhatla SC, Haschke HP, Hartmann E (2003) Distribution of activated calmodulin in the chloronema tip cells of the moss Funaria hygrometrica. J Plant Physiol 160:469–474

    Article  PubMed  CAS  Google Scholar 

  • Cárdenas L, McKenna ST, Kunkel JG, Hepler PK (2006) NAD(P)H oscillates in pollen tubes and is correlated with tip growth. Plant Physiol 142:1460–1468

    Article  PubMed  Google Scholar 

  • Chen T, Wu X, Chen Y, Li X, Huang M, Zheng M, Baluska F, Samaj J, Lin J (2009) Combined proteomic and cytological analysis of Ca2+-calmodulin regulation in Picea meyeri pollen tube growth. Plant Physiol 149:1111–1126

    Article  PubMed  CAS  Google Scholar 

  • Cheung AY (2001) Imaging elongating pollen tubes by green fluorescent protein. Sex Plant Reprod 14:9–14

    Article  Google Scholar 

  • Cheung AY, Wu HM (2001) Pollen tube guidance: right on target. Science 293:1441–1442

    Article  PubMed  CAS  Google Scholar 

  • Cheung AY, Wu HM (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572

    Article  PubMed  CAS  Google Scholar 

  • Cole RA, Fowler JE (2006) Polarized growth: maintaining focus on the tip. Curr Opin Plant Biol 9:579–588

    Article  PubMed  CAS  Google Scholar 

  • Franklin-Tong VE, Dróbak BK, Allan AC, Watkins P, Trewavas AJ (1996) Growth of pollen tubes of Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1, 4, 5-trisphosphate. Plant Cell 8:1305–1321

    Article  PubMed  CAS  Google Scholar 

  • Heim R, Cubitt AB, Tsien RY (1995) Improved GFP fluorescence. Nature 373:663–664

    Article  PubMed  CAS  Google Scholar 

  • Holdaway-Clarke TL, Hepler PK (2003) Control of pollen tube growth: role of ion gradients and fluxes. New Phytol 159:539–563

    Article  CAS  Google Scholar 

  • Holdaway-Clarke TL, Weddle NM, Kim S, Robi A, Parris C, Kunkel JG, Hepler PK (2003) Effect of extracellular calcium, pH and borate on growth oscillations in Lilium formosanum pollen tubes. J Exp Bot 54:65–72

    Article  PubMed  CAS  Google Scholar 

  • Inada H, Seki M, Morikawa H, Nishimura M, Iba K (1997) Existence of three regulatory regions each containing a highly conserved motif in the promoter of plastid-encoded RNA polymerase gene (rpoB). Plant J 11:883–890

    Article  PubMed  CAS  Google Scholar 

  • Liang SP, Wang XF, Lu Y-T (2001) Mediation of flowering by a calmodulin-dependent protein kinase. Sci China Ser C Life Sci 44:506–512

    Article  CAS  Google Scholar 

  • Linde J, Morse L, Domozych DS (2001) Calmodulin and its role in the secretory of the desmid closterium. Int J Plant Sci 162:15–27

    Article  CAS  Google Scholar 

  • Love J, Brownlee C, Trewavas AJ (1997) Ca2+ and calmodulin dynamics during photopolarization in Fucus serratus zygotes. Plant Physiol 115:249–261

    PubMed  CAS  Google Scholar 

  • Ma LG, Sun DY (1997) The effects of extracellular calmodulin on initiation of Hippeastrum rutilum pollen germination and tube growth. Planta 202:336–340

    Article  CAS  Google Scholar 

  • Malhό R, Trewavas AJ (1996) Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell 8:1935–1949

    Article  Google Scholar 

  • Messerli MA, Robison KR (1997) Tip localized Ca2+ pulses are coincident with peak pulsatile growth rates in pollen tubes of Lilium longiflorum. J Cell Sci 110:1269–1278

    PubMed  CAS  Google Scholar 

  • Messerli MA, Robison KR (2003) Ionic and osmotic disruptions of the lily pollen tube oscillator: testing proposed models. Planta 217:147–157

    PubMed  CAS  Google Scholar 

  • Miller DB, Callaham DA, Gross DJ, Hepler PK (1992) Free Ca2+ gradient in growing pollen tubes of Lilium. J Cell Sci 101:7–12

    CAS  Google Scholar 

  • Mitchell KJ, Pinton P, Varadi A, Tacchetti C, Ainscow EK, Pozzan T, Rizzuto R, Rutter GA (2001) Dense core secretory vesicles revealed as a dynamic Ca2+ store in neuroendocrine cells with a vesicle-associated membrane protein acquorin chimaera. J Cell Biol 155:41–51

    Article  PubMed  CAS  Google Scholar 

  • Moutinho A, Trewavas AJ, Malhό R (1998) Rolocation of a Ca2+-dependent protein kinase activity during pollen tube reorientation. Plant Cell 10:1499–1509

    Article  PubMed  CAS  Google Scholar 

  • Ovecka M, Lang I, Baluska F, Ismail A, Illes P, Lichtscheidl IK (2005) Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226:39–54

    Article  PubMed  CAS  Google Scholar 

  • Pagny S, Cabanes-Macheteau M, Gillikin JW, Leborgne-Castel N, Lerouge P, Boston RS, Faye L, Gomord V (2001) Protein recycling from the Golgi apparatus to the endoplasmic reticulum in plants and its minor contribution to calreticulin retention. Plant Cell 12:739–755

    Article  Google Scholar 

  • Peterson BZ, DeMaria CD, Yue DT (1999) Calmodulin is the Ca2+ sensor for Ca2+ dependent inactivation of L-type calcium channels. Neuron 22:549–558

    Article  PubMed  CAS  Google Scholar 

  • Petrásek J, Cerná A, Schwarzerová K, Elckner M, Morris DA, Zazímalová E (2003) Do phytotropins inhibit auxin efflux by impairing vesicle traffic? Plant Physiol 131:254–263

    Article  PubMed  Google Scholar 

  • Pierson ES, Miller DD, Callaham DA, Hackett G, Hepler PK (1996) Tip localised calcium entry fluctuates during pollen tube growth. Dev Biol 174:160–173

    Article  PubMed  CAS  Google Scholar 

  • Rathore KS, Cork RJ, Robinson KR (1991) A cytoplasmic gradient of Ca2+ is correlated with the growth of Lily pollen tubes. Dev Biol 148:612–619

    Article  PubMed  CAS  Google Scholar 

  • Rato C, Monteiro D, Helper PK, Malhό R (2004) Calmodulin activity and cAMP signaling modulate growth and apical secretion in pollen tubes. Plant J 38:887–897

    Article  PubMed  CAS  Google Scholar 

  • Roberts DM, Best L, Oh S-H, Masterson RV, Schell J, Stacey G (1992) Expression of a calmodulin methylation mutants affects the growth and development of transgenic tobacco plants. Proc Natl Acad Sci USA 89:8394–8398

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Concepcion M, Toledo-Ortiz G, Yalovsky S, Caldelari D, Gruissem W (2000) Carboxyl-methylation of prenylated calmodulin CaM53 is required for efficient plasma membrane targeting of the protein. Plant J 24:775–784

    Article  PubMed  CAS  Google Scholar 

  • Rutten TL, Knuiman B (1993) Brefeldin A effects on tobacco pollen tubes. Eur J Cell Biol 61:247–255

    PubMed  CAS  Google Scholar 

  • Snedden WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151:35–66

    Article  CAS  Google Scholar 

  • Tao W-J, Liang SP, Lu Y-T (2004) The roles of calmodulin polar distribution during pollen hydration and germination. Can J Bot 82:774–780

    Article  CAS  Google Scholar 

  • Tirlapur UK, Scali M, Moscatelli A, Casino CD, Cai G, Tiezzi A, Cresti M (1994) Confocal image analysis of spatial variations in immunocytochemically identified calmodulin during pollen hydration, germination and pollen tube tip growth in Nicotiana tabacum L. Zygote 2:63–68

    Article  PubMed  CAS  Google Scholar 

  • Trewavas AJ, Malhó R (1998) Ca2+ signaling in plant cells, the big network! Curr Opin Plant Biol 1:428–433

    Article  PubMed  CAS  Google Scholar 

  • Vos JW, Safadi F, Reddy AS, Hepler PK (2000) The kinesin-like calmodulin-binding protein is differentially involved in cell division. Plant Cell 12:979–990

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Lu L, Zhang C-Y, Singapuri A, Yuan S (2006) Calmodulin concentrates at the apex of growing hyphae and localized to the spitzenkőrper in Aspergillus nidulans. Protoplasma 228:159–166

    Article  PubMed  CAS  Google Scholar 

  • Yokota E, Muto S, Shimmen T (2000) Calcium-calmodulin suppresses the filamentous actin-binding activity of a 138-kiloDalton actin-bundling protein isolated from lily pollen tubes. Plant Physiol 123:645–654

    Article  PubMed  CAS  Google Scholar 

  • Yoon GM, Dowd PE, Gilroy S, McCubbin AG (2006) Calcium-dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth, including regulating polarity. Plant Cell 18:867–878

    Article  PubMed  CAS  Google Scholar 

  • Zielinski RE (2002) Characterization of three new members of the Arabidopsis thaliana calmodulin gene family functionally complement a yeast calmodulin null. Planta 214:446–455

    Article  PubMed  CAS  Google Scholar 

  • Zühlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H (1999) Calmodulin supports both inactivation and facilitation of L-type calcium channel. Nature 399:159–162

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant #30821064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Additional information

Communicated by Y. Lü.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, YY., Tao, WJ., Liang, SP. et al. Analysis of the tip-to-base gradient of CaM in pollen tube pulsant growth using in vivo CaM–GFP system. Plant Cell Rep 28, 1253–1264 (2009). https://doi.org/10.1007/s00299-009-0725-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0725-z

Keywords

Navigation