Skip to main content
Log in

Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Transient genetic transformation of plant organs is an indispensable way of studying gene function in plants. This study was aimed to develop an optimized system for transient Agrobacterium-mediated transformation of the Arabidopsis leaves. The β-glucuronidase (GUS) reporter gene was employed to evaluate growth and biochemical parameters that influence the levels of transient expression. The effects of plant culture conditions, Agrobacterial genetic backgrounds, densities of Agrobacterial cell suspensions, and of several detergents were analyzed. We found that optimization of plant culture conditions is the most critical factor among the parameters analyzed. Higher levels of transient expression were observed in plants grown under short day conditions (SDs) than in plants grown under long day conditions (LDs). Furthermore, incubation of the plants under SDs at high relative humidity (85–90%) for 24 h after infiltration greatly improved the levels of transient expression. Under the optimized culture conditions, expression of the reporter gene reached the peak 3 days after infiltration and was rapidly decreased after the peak. Among the five Agrobacterial strains examined, LAB4404 produced the highest levels of expression. We also examined the effects of detergents, including Triton X-100, Tween-20, and Silwet L-77. Supplementation of the infiltration media either with 0.01% Triton X-100 or 0.01% Tween-20 improved the levels of expression by approximately 1.6-fold. Our observations indicate that transient transformation of the Arabidopsis leaves in the infiltration media supplemented with 0.01% Triton X-100 and incubation of the infiltrated plants under SDs at high relative humidity are necessary for maximal levels of expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ares A, Fownes JH (1999) Water supply regulates structure, productivity, and water use efficiency of Acacia koa forest in Hawaii. Oecologia 121:458–466

    Article  Google Scholar 

  • Baulcombe DC (1999) RNA makes no protein. Curr Biol 9:599–601

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    PubMed  CAS  Google Scholar 

  • Christou P (1997) Rice transformation: bombardment. Plant Mol Biol 35:197–203

    Article  PubMed  CAS  Google Scholar 

  • Chung MH, Chen MK, Pan SM (2000) Floral spray transformation can efficiently generate Arabidopsis transgenic plants. Transgenic Res 9:471–476

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Dessaux Y, Petit A, Tempe J (1992) Opines in Agrobacterium biology. In: Verma DPS (ed) Molecular signals in plant-microbe communications. CRC Press, Boca Raton, pp 109–136

    Google Scholar 

  • Ditt R, Nester EW, Comai L (2001) Plant gene expression responses to Agrobacterium tumefaciens. Proc Natl Acad Sci USA 98:10954–10959

    Article  PubMed  CAS  Google Scholar 

  • Fisher R, Emans N (2000) Molecularfarming of pharmaceutical proteins. Transgenic Res 9:279–299

    Article  Google Scholar 

  • Frederick RD, Thilmony RL, Sessa G, Martin GB (1998) Recognition specificity for the bacterial avirulence protein AvrPto is determined by Thr-204 in the activation loop of the tomato Pto kinase. Mol Cell 2:241–245

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-Mediated plant transformation: the biology behind the “Gene-Jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  PubMed  CAS  Google Scholar 

  • Greb T, Clarenz O, Schäfer E, Muller D, Herrero R, Schmitz G, Theres K (2003) Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev 17:1175–1187

    Article  PubMed  CAS  Google Scholar 

  • Hamilton RH, Fall MZ (1971) The loss of tumour-initiating ability in Agrobaeterium tumefaciens by incubation at high temperature. Experientia 27:229–230

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kapila J, DeRycke R, VanMontagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  • Lindsey J, Jones MGK (1987) Transient gene expression in electroporated protoplasts and intact cells of sugar beet. Plant Mol Biol 10:43–52

    Article  CAS  Google Scholar 

  • Madhou P, Raghavan C, Wells A, Stevenson TW (2006) Genome-wide microarray analysis of the effect of a surfactant application in Arabidopsis. Weed Res 46:275–283

    Article  CAS  Google Scholar 

  • Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet 40:1489–1492

    Article  PubMed  CAS  Google Scholar 

  • Mestre P, Brigneti G, Baulcombe DC (2000) An Ry-mediated resistance response in potato requires the intact active site of the NIa proteinase from potato virus Y. Plant J 23:653–661

    Article  PubMed  CAS  Google Scholar 

  • Montoya AL, Chilton MD, Gordon MP, Sciaky D, Nester EW (1977) Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown gall tumor cells: role of plasmid genes. J Bacteriol 129:101–107

    PubMed  CAS  Google Scholar 

  • Nam J, Matthysse AG, Gelvin SB (1997) Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 9:317–333

    Article  PubMed  CAS  Google Scholar 

  • Negrouk V, Eisner G, Lee H, Han K, Taylor D, Wong HC (2005) Highly efficient transient expression of functional recombinant antibodies in lettuce. Plant Sci 169:433–438

    Article  CAS  Google Scholar 

  • Olhoft PM, Somers DA (2001) L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonarynode cells. Plant Cell Report 20:706–711

    Article  CAS  Google Scholar 

  • Roberts RL, Matz M, Monks DE, Lockwood Mullaney M, Hall T, Nester EW (2003) Purine synthesis and increased Agrobacterium tumefaciens transformation of yeast and plants. Proc Natl Acad Sc USA 100:6634–6639

    Article  CAS  Google Scholar 

  • Rogowsky PM, Close TJ, Chimera JA, Shaw JJ, Kado CI (1987) Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J Bacteriol 169:5101–5112

    PubMed  CAS  Google Scholar 

  • Santos-Rosa M, Poutaraud A, Merdinoglu D, Mestre P (2008) Development of a transient expression system in grapevine via agro-infiltration. Plant Cell Rep 27:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Satisha J, Prakash GS, Venugopalan R (2006) Statistical modeling of the effect of physio-biochemical parameters on water use efficiency of grape varieties, rootstocks and their stionic combinations under moisture stress conditions. Turk J Agric For 30:261–271

    CAS  Google Scholar 

  • Sato S, Newell C, Kolacz K, Tredo L, Finer J, Hinchee M (1993) Direct gene transfer in potato: A comparison of particle bombardment of leaf explants and PEG-mediated transformation of protoplasts. Plant Cell Rep 12:408–413

    CAS  Google Scholar 

  • Schob H, Kunz C, Meins F Jr (1997) Silencing of transgenes introduced into leaves by agroinfiltration: a simple, rapid method for investigation of sequence requirements for gene silencing. Mol Gen Genet 256:581–585

    Article  PubMed  CAS  Google Scholar 

  • Schweizer P, Christoffel A, Dudler R (1999) Transient expression of members of the germin-like gene family in epidermal cells of wheat confers disease resistance. Plant J 20:541–552

    Article  PubMed  CAS  Google Scholar 

  • Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW, Staskawicz BJ (1996) Molecular basis of gene for-gene specificity in bacterial speck disease of tomato. Science 274:2063–2065

    Article  PubMed  CAS  Google Scholar 

  • Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–1475

    Article  PubMed  CAS  Google Scholar 

  • Stachel SE, Nester EW, Zambryski PC (1986) A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc Natl Acad Sci USA 83:379–383

    Article  PubMed  CAS  Google Scholar 

  • Van der Hoorn JAL, Laurent F, Roth R, De Wit PJGM (2000) Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/cf-9-induced and Avr4/Cf-4-induced necrosis. Mol Plant Microbe Interact 13:439–446

    Article  PubMed  Google Scholar 

  • Vaquero C, Sack M, Chandler J, Drossard J, Schuster F, Monecke M, Schillberg S, Fischer R (1999) Transient expression of a tumor-specific single-chain fragment and a chimeric antibody in tobacco leaves. Proc Natl Acad Sci USA 96:11128–11133

    Article  PubMed  CAS  Google Scholar 

  • Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Sparks C, Amoah A, Jones HD (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659–668

    PubMed  CAS  Google Scholar 

  • Yang Y, Li R, Qi M (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J 22:543–551

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky M, Lowe B, Montoya A, Rubin R, Krul W, Gordon M, Nester E (1985a) Molecular and genetic analysis of factors controlling host range in Agrobacterium tumefaciens. Mol Gen Genet 201:237–246

    Article  CAS  Google Scholar 

  • Yanofsky M, Montoya A, Knauf V, Lowe B, Gordon M, Nester E (1985b) Limited-host-range plasmid of Agrobacterium tumefaciens: molecular and genetic analyses of transferred DNA. J Bacteriol 163:341–348

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brain Korea 21, Biogreen 21 (20080401034001), and National Research Laboratory Programs and by grants from the Plant Signaling Network Research Center, the Korea Science and Engineering Foundation (2007-03415), and from the Agricultural R & D Promotion Center (309017-5), Korea Ministry for Food, Agriculture, Forestry and Fisheries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Mo Park.

Additional information

Communicated by J. R. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M.J., Baek, K. & Park, CM. Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis . Plant Cell Rep 28, 1159–1167 (2009). https://doi.org/10.1007/s00299-009-0717-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0717-z

Keywords

Navigation