Skip to main content
Log in

Molecular analyses of the rice glutamate dehydrogenase gene family and their response to nitrogen and phosphorous deprivation

  • Physiology and Biochemistry
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Glutamate dehydrogenases (GDH, EC 1.4.1.2~4) are ubiquitous enzymes encoded by GDH genes. So far, at least two GDH members have been characterized in plants, but most members of this family in rice remains to be characterized. Here, we show that four putative GDH genes (OsGDH1-4) are present in the rice genome. The GDH sequences from rice and other species can be classified into two types (I and II). OsGDH1-3 belonged to type II genes, whereas OsGDH4 belonged to type I like gene. Our data implied that the expansion rate of type I genes was much slower than that of type II genes and species-specific expansion contributed to the evolution of type II genes in plants. The expression levels of the different members of GDH family in rice were evaluated using quantitative real-time PCR and microarray analysis. Gene expression patterns revealed that OsGDH1, OsGDH2, and OsGDH4 are expressed ubiquitously in various tissues, whereas OsGDH3 expression is glumes and stamens specific. The expression of the OsGDH family members responded differentially to nitrogen and phosphorus-deprivation, indicating their roles under such stress conditions. Implications of the expression patterns with respect to the functions of these genes were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GDH:

Glutamate dehydrogenase

Glu:

Glutamate

GOGAT:

Glutamate synthase

GS:

Glutamine synthetase

HCA:

Hierarchical cluster analysis

N :

Nitrogen depriving or nitrogen-free solution

P :

Phosphorus depriving or phosphorus-free solution

qPCR:

Quantitative real-time polymerase chain reaction

α-KG:

α-Ketoglutarate

References

  • Abiko T, Obara M, Ushioda A, Hayakawa T, Hodges M, Yamaya T (2005) Localization of NAD-isocitrate dehydrogenase and glutamate dehydrogenase in rice roots: candidates for providing carbon skeletons to NADH-glutamate synthase. Plant Cell Physiol 46:1724–1734

    Article  PubMed  CAS  Google Scholar 

  • Andersson JO, Roger AJ (2003) Evolution of glutamate dehydrogenase genes: evidence for lateral gene transfer within and between prokaryotes and eukaryotes. Evol Biol 3:14–24

    Article  Google Scholar 

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36

    PubMed  CAS  Google Scholar 

  • Baker PJ, Britton KL, Engel PC, Farrants GW, Lilley KS, Rice DW, Stillman TJ (1992) Subunit assembly and active site location in the structure of glutamate dehydrogenase. Proteins 12:75–86

    Article  PubMed  CAS  Google Scholar 

  • Chen SJ, Kao CH (1996) Ammonium accumulation in relation to senescence of detached maize leaves. Bot Bull Acad Sin 37:255–259

    CAS  Google Scholar 

  • Coruzzi G, Last R (2000) Amino acids. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry & molecular biology of plants, chapter 8. America Society of Plant Physiologist, Rockville, Maryland, USA, pp 370–371

  • Dubois FT, Gonzalez-Moro MB, Estavillo JM, Sangwan R, Gallais A, Hirel B (2003) Glutamate dehydrogenase in plants: is there a new story for an old enzyme? Plant Physiol Biochem 41:565–576

    Article  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  • Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34:D247–D251

    Article  PubMed  CAS  Google Scholar 

  • Fisher HF (1985) L-Glutamate dehydrogenase from bovine liver. Methods Enzymol 113:16–27

    Article  PubMed  CAS  Google Scholar 

  • Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot 58:2339–2358

    Article  PubMed  CAS  Google Scholar 

  • Gilbert W (1987) The exon theory of genes. Cold Spring Harb Symp Quant Biol 52:901–905

    PubMed  CAS  Google Scholar 

  • Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi Chuan 29:1023–1026

    PubMed  CAS  Google Scholar 

  • Ha SB, An GH (1989) Cis-acting regulatory elements controlling temporal and organ-specific activity of nopaline synthase promoter. Nucleic Acids Res 17:215–223

    Article  PubMed  CAS  Google Scholar 

  • Hadzi-Taskovic Sukalovic V (1990) Properties of glutamate dehydrogenase from developing maize endosperm. Physiol Plant 80:238–242

    Article  Google Scholar 

  • Hartl F, Smith BB, James CC (1989) Structure and function of mitochondrial transit polypeptide sequences. Biochim Biophys Acta 988:1–45

    PubMed  CAS  Google Scholar 

  • Helling RB (1998) Pathway choice in glutamate synthesis in Escherichia coli. J Bacteriol 180:4571–4575

    PubMed  CAS  Google Scholar 

  • Hirel B, Andrieu B, Valadier Ml, Renard S, Quillere I, Chelle M, Pommel B, Fournier C, Drouet J (2005) Physiology of maize II: identification of physiological markers representative of the nitrogen status of maize (Zea mays) leaves during grain filling. Physiol Plant 124:178–188

    Article  CAS  Google Scholar 

  • Horan K, Jang C, Bailey-Serres J, Mittler R, Shelton C, Harper JF, Zhu JK, Cushman JC, Gollery M, Girke T (2008) Annotating genes of known and unknown function by large-scale coexpression analysis. Plant Physiol 147:41–57

    Article  PubMed  CAS  Google Scholar 

  • Inokuchi R, Kuma KI, Miyata T, Okada M (2002) Nitrogen-assimilating enzymes in land plants and algae: phylogenic and physiological perspectives. Plant Physiol 116:1–11

    Article  CAS  Google Scholar 

  • Kazan K (2003) Alternative splicing and proteome diversity in plants: the tip of the iceberg has just emerged. Trends Plant Sci 8:468–471

    Article  PubMed  CAS  Google Scholar 

  • Kubo N, Harada K, Hirai A, Kadowaki K (1999) A single nuclear transcript encoding mitochondrial RPS14 and SDHB of rice is processed by alternative splicing: common use of the same mitochondrial targeting signal for different proteins. Proc Natl Acad Sci USA 96:9207–9211

    Article  PubMed  CAS  Google Scholar 

  • Lea PJ, Miflin BJ (1974) Alternative route for nitrogen assimilation in higher plants. Nature 251:614–616

    Article  PubMed  CAS  Google Scholar 

  • Lea PJ, Miflin BJ (2003) Glutamate synthase and the synthesis of glutamate in plants. Plant Physiol Biochem 41:555–564

    Article  CAS  Google Scholar 

  • Lehmann T, Ratajczak L (2007) The pivotal role of glutamate dehydrogenase (GDH) in the mobilization of N and C from storage material to asparagine in germinating seeds of yellow lupine. J Plant Physiol 165:149–158

    Article  PubMed  Google Scholar 

  • Lian XM, Wang SP, Zhang JW, Feng Q, Zhang LD, Fan DL, Li XH, Yuan DJ, Han B, Zhang QF (2006) Expression profiles of 10, 422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Mol Biol 60:617–631

    Article  PubMed  CAS  Google Scholar 

  • Loulakakis KA, Roubelakis-Angelakis KA (1991) Plant NAD(H)-Glutamate dehydrogenase consists of two subunit polypeptides and their participation in the seven isoenzymes occurs in an ordered ratio. Plant Physiol 97:104–111

    Article  PubMed  CAS  Google Scholar 

  • Masclaux-Daubresse C, Reisdorf-Cren M, Pageau K, Lelandais M, Grandjean O, Kronenberger J, Valadier MH, Feraud M, Jouglet T, Suzuki A (2006) Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. Plant Physiol 140:444–456

    Article  PubMed  CAS  Google Scholar 

  • Melo-Oliveira R, Oliveira IC, Coruzzi GM (1996) Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation. Proc Natl Acad Sci USA 93:4718–4723

    Article  PubMed  CAS  Google Scholar 

  • Miyashita Y, Good AG (2008) NAD(H)-dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark-induced carbon starvation. J Exp Bot 59:667–680

    Article  PubMed  CAS  Google Scholar 

  • Morcuende R, Bari R, Gibon Y, Zheng W, Pant BD, Blasing O, Usadel B, Czechowski T, Udvardi MK, Stitt M, Scheible WR (2007) Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30:85–112

    Article  PubMed  CAS  Google Scholar 

  • Patthy L (1987) Intron-dependent evolution: preferred types of exons and introns. FEBS Lett 214:1–7

    Article  PubMed  CAS  Google Scholar 

  • Pavesi A, Ficarelli A, Tassi F, Restivo FM (2000) Cloning of two glutamate dehydrogenase cDNAs from Asparagus officinalis: sequence analysis and evolutionary implications. Genome 43:306–316

    Article  PubMed  CAS  Google Scholar 

  • Peng M, Bi YM, Zhu T, Rothstein SJ (2007) Genome-wide analysis of Arabidopsis responsive transcriptome to nitrogen limitation and its regulation by the ubiquitin ligase gene NLA. Plant Mol Biol 65:775–797

    Article  PubMed  CAS  Google Scholar 

  • Purnell MP, Botella JR (2007) Tobacco isoenzyme 1 of NAD(H)-dependent glutamate dehydrogenase catabolizes glutamate in vivo. Plant Physiol 143:530–539

    Article  PubMed  CAS  Google Scholar 

  • Purnell MP, Skopelitis DS, Roubelakis-Angelakis KA, Botella JR (2005) Modulation of higher-plant NAD(H)-dependent glutamate dehydrogenase activity in transgenic tobacco via alteration of beta subunit levels. Planta 222:167–180

    PubMed  CAS  Google Scholar 

  • Restivo FM (2004) Molecular cloning of glutamate dehydrogenase genes of Nicotiana plumbaginifolia: structure analysis and regulation of their expression by physiological and stress conditions. Plant Sci 166:971–982

    Article  CAS  Google Scholar 

  • Sharp PA (1981) Speculations on RNA splicing. Cell 23:643–646

    Article  PubMed  CAS  Google Scholar 

  • Skopelitis DS, Paranychianakis NV, Paschalidis KA, Pliakonis ED, Delis ID, Yakoumakis DI, Kouvarakis A, Papadakis AK, Stephanou EG, Roubelakis-Angelakis KA (2006) Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18:2767–2781

    Article  PubMed  CAS  Google Scholar 

  • Skopelitis DS, Paranychianakis NV, Kouvarakis A, Spyros A, Stephanou EG, Roubelakis-Angelakis KA (2007) The isoenzyme 7 of tobacco NAD(H)-dependent glutamate dehydrogenase exhibits high deaminating and low aminating activities in vivo. Plant Physiol 145:1726–1734

    Article  PubMed  CAS  Google Scholar 

  • Slonim DK (2002) From patterns to pathways: gene expression data analysis comes of age. Nat Genet 32(Suppl):502–508

    Article  PubMed  CAS  Google Scholar 

  • Stewart AJ, Chapman W, Jenkins GI, Graham I, Martin T, Crozier A (2002) The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant Cell Environ 24:1189–1197

    Article  Google Scholar 

  • Syntichaki KM, Loulakakis KA, Roubelakis-Angelakis KA (1996) The amino-acid sequence similarity of plant glutamate dehydrogenase to the extremophilic archaeal enzyme conforms to its stress-related function. Gene 168:87–92

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi M, Abiko T, Yamaya T (2007) Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J Exp Bot 58:2319–2327

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Bio Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Tan YF, Xing YZ, Li JX, Yu SB, Xu CG, Zhang QF (2000) Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor Appl Genet 101:823–829

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:D4876–D4882

    Article  Google Scholar 

  • Turano FJ, Thakkar SS, Fang T, Weisemann JM (1997) Characterization and expression of NAD(H)-dependent glutamate dehydrogenase genes in Arabidopsis. Plant Physiol 113:1329–1341

    Article  PubMed  CAS  Google Scholar 

  • Vandepoele K, Simillion C, Van de Peer Y (2003) Evidence that rice and other cereals are ancient aneuploids. Plant Cell 15:2192–2202

    Article  PubMed  CAS  Google Scholar 

  • Wang BB, Brendel V (2006) Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci USA 103:7175–7180

    Article  PubMed  CAS  Google Scholar 

  • Windass JD, Worsey MJ, Pioli EM, Pioli D, Barth PT, Atherton KT, Dart EC, Byrom D, Powell K, Senior PJ (1980) Improved conversion of methanol to single-cell protein by Methylophilus methylotrophus. Nature 287:396–401

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by grants from the National Basic Research Program of China (2005CB120905), the National Special Key Project of China on Functional Genomics of Major Plants and Animals, the National Natural Science Foundation of China, and the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (No. 707045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingming Lian.

Additional information

Communicated by Y. Lu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, X., Xie, W., Lian, X. et al. Molecular analyses of the rice glutamate dehydrogenase gene family and their response to nitrogen and phosphorous deprivation. Plant Cell Rep 28, 1115–1126 (2009). https://doi.org/10.1007/s00299-009-0709-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0709-z

Keywords

Navigation