Skip to main content

Advertisement

Log in

Generation of transgenic oriental melon resistant to Zucchini yellow mosaic virus by an improved cotyledon-cutting method

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Production of melon (Cucumis melo L.) worldwide is often limited by the potyvirus, Zucchini yellow mosaic virus (ZYMV). In order to engineer melon lines resistant to ZYMV, a construct containing the translatable coat protein (CP) sequence coupled with the 3′ non-translatable region of the virus was generated and used to transform an elite cultivar of oriental melon (Silver light) mediated by Agrobacterium using an improved cotyledon-cutting method. Removal of 1-mm portion from the proximal end of cotyledons greatly increased the frequency of transgenic regenerants by significantly decreasing the incidence of false positive and aberrant transformants. Results of greenhouse evaluation of transgenic lines by mechanical challenge with ZYMV identified transgenic lines exhibiting different levels of resistance or complete immunity to ZYMV. Southern hybridization of transgenic lines revealed random insertion of the transgene in host genome, with insert numbers differing among transformants. Northern hybridization revealed great variations in the levels of accumulation of the transgene transcripts among transgenic lines, and evidenced an inverse correlation of the levels of accumulation of transgene transcript to the degrees of virus resistance, indicating post-transcriptional gene silencing (PTGS)-mediated transgenic resistance. These transgenic melon lines with high degrees of resistance to ZYMV have great potential for the control of ZYMV in East Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ZYMV:

Zucchini yellow mosaic virus

CP:

Coat protein

PTGS:

Post-transcriptional gene silencing

nt:

Nucleotide

References

  • Akasaka-Kennedy Y, Tomita K, Ezura H (2004) Efficient plant regeneration and Agrobacterium-mediated transformation via somatic embryogenesis in melon (Cucumis melo L.). Plant Sci 166:763–769

    Article  CAS  Google Scholar 

  • Alderz WC, Purcifull DE, Simone GW, Hiebert E (1983) Zucchini yellow mosaic virus: a pathogen of squash and other cucurbits in Florida. Proc Fla State Hortic Soc 96:72–74

    Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  • Beachy RN (1999) Coat-protein-mediated resistance to tobacco mosaic virus: discovery mechanisms and exploitation. Philos Trans R Soc Lond B Biol Sci 354:659–664

    Article  PubMed  CAS  Google Scholar 

  • Chang YM, Hsaio CH, Yang WZ, Hseu SH, Chao YJ, Huang CH (1987) The occurrence and distribution of five cucurbit viruses on melon and watermelon in Taiwan. J Agric Res 36:389–397

    Google Scholar 

  • Cheng YH, Yang JS, Yeh SD (1996) Efficient transformation of papaya by coat protein gene of papaya ringspot virus mediated by Agrobacterium following liquid-phase wounding of embryogenic tissues with carborundum. Plant Cell Rep 16:127–132

    Article  CAS  Google Scholar 

  • Colijn-Hooymans CM, Hakkert JC, Jansen J, Custer JBM (1994) Competence for regeneration of cucumber cotyledons is restricted to specific developmental stages. Plant Cell Tissue Organ Culture 39:211–217

    Article  Google Scholar 

  • Danin-Poleg Y, Paris HS, Cohen S, Rabinowitch HD, Karchi Z (1997) Oligogenic inheritance of resistance to zucchini yellow mosaic virus in melons. Euphytica 93:331–337

    Article  Google Scholar 

  • Davis RF (1986) Partial characterization of zucchini yellow mosaic virus isolated from squash in Turkey. Plant Dis 70:735–738

    Article  Google Scholar 

  • Desbiez C, Lecoq H (1997) Zucchini yellow mosaic virus. Plant Pathol 46:809–829

    Article  Google Scholar 

  • Dirks R, van Buggenum M (1989) In vitro plant regeneration from leaf and cotyledon explants of Cucumis melo L. Plant Cell Rep 7:626–627

    Google Scholar 

  • Ezura H, Amagai H, Yoshioka K, Oosawa K (1992) Highly frequent appearance of tetraploidy in regenerated plants, a universal phenomenon, in tissue cultures of melon (Cucumis melo L.). Plant Sci 85:209–213

    Article  Google Scholar 

  • Fang G, Grumet R (1990) Agrobacterium tumefaciens mediated transformation and regeneration of muskmelon plants. Plant Cell Rep 9:160–164

    Article  CAS  Google Scholar 

  • Fang G, Grumet R (1993) Genetic engineering of potyvirus resistance using constructs derived from the Zucchini yellow mosaic virus coat protein gene. Mol Plant Microbe Interact 6:358–367

    PubMed  CAS  Google Scholar 

  • Fuchs M, McFerson JR, Tricoli DM, McMaster JR, Deng RZ, Boeshore ML, Reynolds JF, Russell PF, Quemada HD, Gonsalves D (1997) Cantaloupe line CZW-30 containing coat protein genes of Cucumber mosaic virus, Zucchini yellow mosaic virus, and Watermelon mosaic virus-2 is resistant to these three viruses in the field. Mol Breed 4:279–290

    Article  Google Scholar 

  • Fulton TM (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209

    Article  CAS  Google Scholar 

  • Gaba V, Zelcer A, Gal-On A (2004) Cucurbit biotechnology—the importance of virus resistance. In Vitro Cell Dev Biol Plant 40:346–358

    Article  CAS  Google Scholar 

  • Galperin M, Patlis L, Ovadia A, Wolf D, Zelcer A, Kenigsbuch D (2003) A melon genotype with superior competence for regeneration and transformation. Plant Breed 122:66–69

    Article  Google Scholar 

  • Gonsalves C, Xue B, Yepes M, Fuchs M, Ling K, Namba S, Chee P, Slightom JL, Gonsalves D (1994) Transferring cucumber mosaic virus-white leaf strain coat protein gene in Cucumis melo L. and evaluating transgenic plants for protection against infections. J Am Soc Hortic Sci 119:345–355

    CAS  Google Scholar 

  • Guis M, Roustan JP, Dogimont C, Pitrat M, Pech JC (1998) Melon biotechnology. Biotechnol Genet Eng Rev 15:289–311

    CAS  Google Scholar 

  • Guis M, Amor MB, Latché A, Pech JC, Roustan JP (2000) A reliable system for the transformation of cantaloupe Charentais melon (Cucumis melo L. var. cantalupensis) leading to a majority of diploid regenerants. Sci Hort 84:91–99

    Article  CAS  Google Scholar 

  • Hemenway C, Fang RX, Kaniewski W, Chua NH, Tumer NE (1988) Analysis of the mechanism of protection in transgenic plants expressing the Potato virus X or its antisense RNA. EMBO J 7:1273–1280

    PubMed  CAS  Google Scholar 

  • Hseu SH, Huang CH, Chang CA, Wang WZ, Chang YM, Hsiao CH (1987) The occurrence of five viruses in six cucurbits in Taiwan. Plant Prot Bull 29:233–244

    Google Scholar 

  • Jan FJ, Pang SZ, Tricoli DM, Gonsalves D (2000) Evidence that resistance in squash mosaic comovirus coat protein-transgenic plants is affected by plant development stage and enhanced by combination of transgenes from different lines. J Gen Virol 81:2299–2306

    PubMed  CAS  Google Scholar 

  • Kathal R, Bhatnagar SP, Bhojwani SS (1988) Regeneration of plants from leaf explants of Cucumis melo cv. Pusa Sharbati. Plant Cell Rep 7:449–451

    Google Scholar 

  • Krubphachaya P, Juříček M, Kertbundit S (2007) Induction of RNA-mediated resistance to Papaya ringspot virus Type W. J Biochem Mol Biol 40:404–411

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T-4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lecoq H, Lisa V, Dellavalle G (1983) Serological identity of Muskmelon yellow stunt and Zucchini yellow mosaic viruses. Plant Dis 67:824–825

    Article  Google Scholar 

  • Lee YK, Chung WI, Ezura H (2003) Efficient plant regeneration via organogenesis in winter squash (Cucurbita maxima Duch.). Plant Sci 164:413–418

    Article  CAS  Google Scholar 

  • Lesemann DE, Makkouk KM, Koenig R, Samman EN (1983) Natural infection of cucumbers by Zucchini yellow mosaic virus in Lebanon. Phytopathol Z 108:304–313

    Article  Google Scholar 

  • Lin SS, Hou RF, Huang CH, Yeh SD (1998) Characterization of Zucchini yellow mosaic virus (ZYMV) isolates collected from Taiwan by host reactions, serology, and RT-PCR. Plant Prot Bull 40:163–176

    CAS  Google Scholar 

  • Lin SS, Hou RF, Yeh SD (2000) Heteroduplex mobility and sequence analyses for assessment of variability of Zucchini yellow mosaic virus. Phytopathology 90:228–235

    Article  PubMed  CAS  Google Scholar 

  • Lisa V, Boccardo G, D’Agostino G, Dellavalle G, D’Aquilio M (1981) Characterization of a potyvirus that causes zucchini yellow mosaic transmitted nonpersistently by Myzus persicae, insect vectors. Phytopathology 71:667–672

    Article  CAS  Google Scholar 

  • Loesch-Fries LS, Merlo D, Zinnen T, Burhop L, Hill K, Krahn K, Jarvis N, Nelson S, Halk E (1987) Expression of Alfalfa mosaic virus RNA 4 in transgenic plants confers virus resistance. EMBO J 6:1845–1851

    PubMed  CAS  Google Scholar 

  • Marks GE, Davies DR (1979) The cytology of cotyledon cells and the induction of giant polytene chromosomes in Pisum sativum. Protoplasma 101:73–80

    Article  Google Scholar 

  • Mattanovich D, Ruker F, Machado AC, Laimer M, Regner F, Steinkellner H, Himmler G, Katinger H (1989) Efficient transformation of Agrobacterium spp. by electroporation. Nucleic Acids Res 17:6747

    Article  PubMed  CAS  Google Scholar 

  • Moreno V, Garcia-Sogo M, Granell I, Garcia-Sogo B, Roig LA (1985) Plant regeneration from calli of melon (Cucumis melo L., cv. Amarillo Oro). Plant Cell Tissue Organ Cult 5:139–146

    Article  CAS  Google Scholar 

  • Munger HM (1993) Breeding for viral disease resistance in cucurbits. In: Kyle MM (ed) Resistance to viral diseases of vegetables: genetics and breeding. Timber Press, Portland, OR, pp 44–60

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nelson RS, McCormick SM, Delannay X, Dube P, Layton J, Anderson EJ, Kaniewski M, Proksch RK, Horsch RB, Rogers SG, Fraley RT, Beachy RN (1988) Virus tolerance, plant growth, and field performance of transgenic tomato plants expressing coat protein from Tobacco mosaic virus. Biotechnology 6:403–409

    Article  Google Scholar 

  • Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428

    Article  PubMed  CAS  Google Scholar 

  • Nugent PE, Ray DT (1992) Spontaneous tetraploid melons. HortScience 27:47–50

    Google Scholar 

  • Nuňez-Palenius HG, Gomez-Lim M, Ochoa-Alejo N, Grumet R, Lester G, Cantliffe DJ (2008) Melon fruits: genetic diversity, physiology, and biotechnology features. Crit Rev Biotechnol 28:13–55

    Article  PubMed  Google Scholar 

  • Pang SZ, Jan FJ, Tricoli DM, Russell PF, Carney KJ, Hu JS, Fuchs M, Quemada HD, Gonsalves D (2000) Resistance to squash mosaic comovirus in transgenic squash plants expressing its coat protein genes. Mol Breed 6:87–93

    Article  CAS  Google Scholar 

  • Provvidenti R (1993) Resistance to viral diseases of cucurbits. In: Kyle MM (ed) Resistance to viral diseases of vegetables. Timber Press, Portland, OR, pp 8–43

    Google Scholar 

  • Provvidenti R, Gonsalves D, Humaydan HS (1984) Occurrence of Zucchini yellow mosaic virus in cucurbits from Connecticut. Plant Dis 68:443–446

    Article  Google Scholar 

  • Rajagopalan PA, Perl-Treves R (2005) Improved cucumber transformation by a modified explant dissection and selection protocol. HortScience 40:431–435

    Google Scholar 

  • Rhimi A, Fadhel NB, Boussaid M (2006) Plant regeneration via somatic embryogenesis from in vitro tissue culture in two Tunisian Cucumis melo cultivars Maazoun and Beji. Plant Cell Tissue Organ Cult 84:239–243

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sanford JC, Johnson SA (1985) The concept of parasite-derived resistance: deriving resistance genes from the parasites own genome. J Thero Biol 115:395–405

    Article  Google Scholar 

  • Sijen T, Wellink JB, van Kammen A (1996) RNA-mediated virus resistance: role of repeated transgenes and delineation of targeted regions. Plant Cell 8:2277–2294

    Article  PubMed  CAS  Google Scholar 

  • Souza FVD, Garcia-Sogo B, Souza ADS, San-Juán AP, Moreno V (2006) Morphogenetic response of cotyledon and leaf explants of melon (Cucumis melo L.) cv. Amarillo Oro. Braz Arch Biol Technol 49:21–27

    Google Scholar 

  • Staub JE, Grumet R (1993) Selection for multiple disease resistance reduces cucumber yield potential. Euphytica 67:205–213

    Article  Google Scholar 

  • Szittya G, Silhavy D, Molnár A, Havelda Z, Lovas A, Lakatos L, Bánfalvi Z, Burgyán J (2003) Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J 22:633–640

    Article  PubMed  CAS  Google Scholar 

  • Tenllado F, Llave C, Diaz-Ruiz JR (2004) RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Res 102:85–96

    Article  PubMed  CAS  Google Scholar 

  • van Dun CMP, Bol JF, van Vloten-Doting L (1987) Expression of Alfalfa mosaic virus and Tobacco streak virus protein genes in transgenic tobacco plants. Virology 159:299–305

    Article  PubMed  Google Scholar 

  • Vaucheret H, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Mourrain P, Palauqui JC, Vernhettes S (1998) Transgenic-induced gene silencing in plant. Plant J 16:651–659

    Article  PubMed  CAS  Google Scholar 

  • Yeh SD, Gonsalves D (1984) Purification and immunological analysis of cylindrical-inclusion protein induced by Papaya ringspot virus and Watermelon mosaic virus I. Phytopathology 74:1273–1278

    Article  CAS  Google Scholar 

  • Zhang X, Yuan YR, Pei Y, Lin SS, Tuschl T, Patel DJ, Chua NH (2006) Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev 20:3255–3268

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shih-Shun Lin for pBI-ZCP3′UTR clone. This study was supported by the National Agricultural Biotechnology Program [(89BT-2.3-FD-63(3) and 90BT-2.1.3-FD-Z3(2)] from Council of Agriculture, Taiwan, ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyi-Dong Yeh.

Additional information

Communicated by G. Phillips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, HW., Yu, TA., Raja, J.A.J. et al. Generation of transgenic oriental melon resistant to Zucchini yellow mosaic virus by an improved cotyledon-cutting method. Plant Cell Rep 28, 1053–1064 (2009). https://doi.org/10.1007/s00299-009-0705-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0705-3

Keywords

Navigation