Skip to main content

Advertisement

Log in

Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

A number of parameters related to Agrobacterium-mediated infection were tested to optimize transformation frequencies of sorghum (Sorghum bicolor L.). A plasmid with a selectable marker, phosphomannose isomerase, and an sgfp reporter gene was used. First, storing immature spikes at 4°C before use decreased frequency of GFP-expressing calli, for example, in sorghum variety P898012 from 22.5% at 0 day to 6.4% at 5 days. Next, heating immature embryos (IEs) at various temperatures for 3 min prior to Agrobacterium infection increased frequencies of GFP-expressing calli, of mannose-selected calli and of transformed calli. The optimal 43°C heat treatment increased transformation frequencies from 2.6% with no heat to 7.6%. Using different heating times at 43°C prior to infection showed 3 min was optimal. Centrifuging IEs with no heat or heating at various temperatures decreased frequencies of all tissue responses; however, both heat and centrifugation increased de-differentiation of tissue. If IEs were cooled at 25°C versus on ice after heating and prior to infection, numbers with GFP-expressing cells increased from 34.2 to 49.1%. The most optimal treatment, 43°C for 3 min, cooling at 25°C and no centrifugation, yielded 49.1% GFP-expressing calli and 8.3% stable transformation frequency. Transformation frequencies greater than 7% were routinely observed using similar treatments over 5 months of testing. This reproducible frequency, calculated as numbers of independent IEs producing regenerable transgenic tissues, confirmed by PCR, western and DNA hybridization analysis, divided by total numbers of IEs infected, is several-fold higher than published frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • An G, Ebert PR, Mitra A, Ha SB (1988) Binary vectors. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual, Kluwer Academic Publishers, Dordrecht, pp A31-A3/19

  • Arriola PE, Ellstrand NC (1997) Fitness of interspecific hybrids in the genus Sorghum: persistence of crop genes in wild populations. Ecol Appl 7:512–518

    Article  Google Scholar 

  • Aswath CR, Mo SY, Kim DH, Park SW (2006) Agrobacterium and biolistic transformation of onion using non-antibiotic selection marker phosphomannose isomerase. Plant Cell Rep 25:92–99

    Article  PubMed  CAS  Google Scholar 

  • Cai T, Butler L (1990) Plant regeneration from embryogenic callus initiated from immature inflorescences of several high-tannin sorghums. Plant Cell Tissue Organ Cult 20:101–110

    Article  Google Scholar 

  • Cai T, Daly B, Butler L (1987) Callus induction and plant regeneration from shoot portions of mature embryos of high-tannin sorghum. Plant Cell Tissue Organ Cult 9:245–252

    Article  Google Scholar 

  • Carvalho CHS, Zehr UB, Gunaratna N, Anderson J, Kononowicz HH, Hodges TK, Axtell JD (2004) Agrobacterium-mediated transformation of sorghum: factors that affect transformation efficiency. Genet Mol Biol 27:259–269

    CAS  Google Scholar 

  • Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci USA 90:11212–11216

    Article  PubMed  CAS  Google Scholar 

  • Casas AM, Kononowicz AK, Haan TG, Zhang L, Tomes DT, Bressan RA, Hasegawa PM (1997) Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cell Dev Biol Plant 33:92–100

    Google Scholar 

  • Center for Food Safety and Applied Nutrition, Food and Drug Administration (1998) Guidance for industry: use of antibiotic resistance marker genes in transgenic plants. http://vm.cfsan.fda.gov/~dms/opa-armg.html

  • Chiu W, Hiwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J, Chiu WL (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Trans Res 5:213–218

    Article  CAS  Google Scholar 

  • Dicko MH, Gruppen H, Traore AS, Voragen AGJ, Berkel WJH (2006) Phenolic compounds and related enzymes as determinants of sorghum for food use. Biotech Mol Biol Rev 1:21–38

    Google Scholar 

  • Dykes L, Rooney LW (2006) Sorghum and millet phenols and antioxidants. J Cereal Sci 44:236–251

    Article  CAS  Google Scholar 

  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30:539–556

    Article  Google Scholar 

  • Emani C, Sunilkumar G, Rathore KS (2002) Transgene silencing and reactivation in sorghum. Plant Sci 162:181–192

    Article  CAS  Google Scholar 

  • Gao Z, Jayaraj J, Muthukrishnan S, Claflin L, Liang GH (2005a) Efficient genetic transformation of sorghum using a visual screening marker. Genome 48:321–333

    PubMed  CAS  Google Scholar 

  • Gao Z, Xie X, Ling Y, Muthukrishnan S, Liang GH (2005b) Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotech J 3:591–599

    Article  CAS  Google Scholar 

  • Girijashankar V, Sharma HC, Sharma KK, Swathisree V, Prasad LS, Bhat BV, Royer M, Secundo BS, Narasu ML, Altosaar I, Seetharama N (2005) Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo partellus). Plant Cell Rep 24:513–522

    Article  PubMed  CAS  Google Scholar 

  • Hagio T, Blowers AD, Earle ED (1991) Stable transformation of sorghum cell cultures after bombardment with DNA-coated microprojectiles. Plant Cell Rep 10:260–264

    Article  CAS  Google Scholar 

  • Hansen G (1998) Plant transformation methods. US Patent Number 6, 162, 965

  • Hansen G (2000) Evidence for Agrobacterium-induced apoptosis in maize cells. Mol Plant Microbe Interact 13:649–657

    Article  PubMed  CAS  Google Scholar 

  • He Z, Duan Z, Liang W, Chen F, Yao W, Liang H, Yue C, Sun Z, Chen F, Dai J (2006) Mannose selection system used for cucumber transformation. Plant Cell Rep 25:953–958

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ishida Y, Kasaoka K, Komari T (2006) Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 87:233–243

    Article  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoot RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Hood EE, Helmer GD, Fraley RT, Chilton MD (1986) The hypovirulence of Agrobacterium tumefaciens A281 is encoded in the region of pTiBo542 outside the T-DNA. J Bacteriol 168:1291–1301

    PubMed  CAS  Google Scholar 

  • Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25:784–791

    Article  PubMed  CAS  Google Scholar 

  • Iordanskjy S, Zhao Y, Dubrovsky L, Iordanskaya T, Chen M, Liang D, Bukrinsky M (2004) Heat shock protein 70 protects cells from cell cycle arrest and apoptosis induced by human immunodeficiency virus type 1 viral protein R. J Virol 78:9697–9704

    Article  CAS  Google Scholar 

  • Jain M, Chengalrayan K, Abouzid A, Gallo M (2007) Prospecting the utility of a PMI/mannose selection system for the recovery of transgenic sugar cane (Saccharum spp. hybrid) plants. Plant Cell Rep 26:581–590

    Article  PubMed  CAS  Google Scholar 

  • Jenks MA, Joly RJ, Peters PJ, Rich PJ, Axtell JD, Ashworth EN (1994) Chemically induced cuticle mutation affecting epidermal conductance to water vapor and disease susceptibility in Sorghum bicolor (L.) Moench. Plant Physiol 105:1239–1245

    PubMed  CAS  Google Scholar 

  • Joersbo M, Donaldson I, Kreiberg J, Petersen SG, Brunstedt J, Okkels FT (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breeding 4:111–117

    Article  CAS  Google Scholar 

  • Kaeppler HF, Pederson JF (1997) Evaluation of 41 elite and exotic inbred sorghum genotypes for high quality callus production. Plant Cell Tissue Organ Cult 48:71–75

    Article  Google Scholar 

  • Khanna H, Becker D, Kleidon J, Dale J (2004) Centrifugation-assisted Agrobacterium tumefaciens-mediated transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady finger Aab). Mol Breeding 14:239–252

    Article  CAS  Google Scholar 

  • Lemaux PG (2008) Genetically engineered plants and foods. A scientist’s analysis of the issues. Part I. Ann Rev Plant Biol 59:771–812

    Article  CAS  Google Scholar 

  • Li HQ, Kang PJ, Li ML, Li MR (2007) Genetic transformation of Torenia fournieri using the PMI/mannose selection system. Plant Cell Tissue Organ Cult 90:103–109

    Article  CAS  Google Scholar 

  • Masteller VJ, Holden DJ (1970) The growth of and organ formation from callus tissue of sorghum. Plant Physiol 45:362–364

    Article  PubMed  CAS  Google Scholar 

  • McElroy D, Louwerse JD, McElroy SM, Lemaux PG (1997) Development of a simple transient assay for Ac/Ds activity in cells of intact barley tissue. Plant J 11:157–165

    Article  PubMed  CAS  Google Scholar 

  • Miles H, Guest JR (1984) Nucleotide sequence and transcriptional start point of the phosphomannose isomerase gene (manA) of Escherichia coli. Gene 32:41–48

    Article  PubMed  CAS  Google Scholar 

  • Miller FR (1984) Registration of RTx430 sorghum parental line. Crop Sci 24:1224

    Article  Google Scholar 

  • Min BW, Cho YN, Song MJ, Noh TK, Kim BK, Chae WK, Park YS, Choi YD, Harn CH (2007) Successful genetic transformation of Chinese cabbage using phosphomannose isomerase as a selection marker. Plant Cell Rep 26:337–344

    Article  PubMed  CAS  Google Scholar 

  • Morrell PL, Williams-Coplin TD, Lattu AL, Bowers JE, Chandler JM, Paterson AH (2005) Crop-to-weed introgression has impacted allelic composition of johnsongrass populations with and without recent exposure to cultivated sorghum. Mol Ecol 4:2143–2154

    Article  CAS  Google Scholar 

  • MSTATC (2004) MSTATC, Version 1.42, Michigan State University, USA

  • Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TV, Thu TT, Claeys M, Angenon G (2007) Agrobacterium-mediated transformation of sorghum [Sorghum bicolor (L.) Moench] using an improved in vitro regeneration system. Plant Cell Tissue Organ Cult 91:155–164

    Article  CAS  Google Scholar 

  • O’Kennedy MM, Grootboom A, Shewry PR (2006) Harnessing sorghum and millet biotechnology for food and health. J Cereal Sci 44:224–235

    Article  CAS  Google Scholar 

  • Penna S, Sági L, Swennen R (2002) Positive selectable marker genes for routine plant transformation. In Vitro Cell Dev Biol Plant 38:125–128

    Article  CAS  Google Scholar 

  • Privalle LS (2002) Phosphomannose isomerase, a novel plant selection system. Ann N Y Acad Sci 964:129–138

    PubMed  CAS  Google Scholar 

  • Ramesh SA, Kaiser BN, Franks T, Collins G, Sedgley M (2006) Improved methods in Agrobacterium-mediated transformation of almond using positive (mannose/pmi) or negative (kanamycin resistance) selection-based protocols. Plant Cell Rep 25:821–828

    Article  PubMed  CAS  Google Scholar 

  • Seetharama N, Sairam RV, Rani TS (2000) Regeneration of sorghum from shoot tip cultures and field performance of the progeny. Plant Cell Tissue Organ Cult 61:169–173

    Article  Google Scholar 

  • Sheen J, Hwang S, Niwa Y, Kobayashi H, Galbraith DW (1995) Green-fluorescent protein as a new vital marker in plant cells. Plant J 8:777–784

    Article  PubMed  CAS  Google Scholar 

  • Shrawat HK (2007) Genetic transformation of cereals mediated by Agrobacterium. Inform Syst Biotechnol News Rep, February, pp 8–10. http://www.isb.vt.edu/news/2007/Feb07.pdf

  • Shrawat HK, Lörz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4:575–603

    Article  PubMed  CAS  Google Scholar 

  • Singh J, Zhang S, Chen C, Cooper L, Bregitzer P, Sturbaum A, Hayes PM, Lemaux PG (2006) High-frequency Ds remobilization over multiple generations in barley facilitates gene tagging in large genome cereals. Plant Mol Biol 62:937–950

    Article  PubMed  CAS  Google Scholar 

  • Tadesse Y, Sagi L, Swennen R, Jacobs M (2003) Optimization of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microprojectile bombardment. Plant Cell Tissue Organ Cult 75:1–18

    Article  CAS  Google Scholar 

  • Thompson CJ, Movva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6:2519–2523

    PubMed  CAS  Google Scholar 

  • Wenck A, Hansen G (2004) Positive selection. In: Pena L (ed) Transgenic plants: methods and protocols. Humana Press, Totowa, pp 227–235

    Chapter  Google Scholar 

  • Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20:429–439

    Article  CAS  Google Scholar 

  • Zhao ZY (2006) Sorghum (Sorghum bicolor L.). In: Wang K (ed) Methods in molecular biology. Agrobacterium protocols 2/e, vol 1. Humana Press, Totowa, 343:233–244

  • Zhao ZY, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798

    Article  PubMed  CAS  Google Scholar 

  • Zhao ZY, Glassman K, Sewalt V, Wang N, Miller M, Chang S, Thompson T, Catron S, Wu E, Bidney D, Kedebe Y, Jung R (2003) Nutritionally improved transgenic sorghum. In: Vasil IK (ed) Plant Biotechnology 2002 and beyond. Kluwer Academic Publishers, Dordrecht, pp 413–416

    Google Scholar 

  • Zhu H, Muthukrishnan S, Krishnaveni S, Wilde G, Jeoung JM, Liang GH (1998) Biolistic transformation of sorghum using a rice chitinase gene. J Genet Breeding 52:243–252

    CAS  Google Scholar 

Download references

Acknowledgments

S. Gurel (S.G.) thanks The General Directorate of Turkish Sugar Factories Co. for the work permission abroad. E. Gurel (E.G.) deeply appreciates the financial support of TUBITAK (The Scientific and Technological Research Council of Turkey). E.G. and S.G. are also cordially grateful to Professor P.G. Lemaux (P.G.L.) for the opportunity to come to the University of California, Berkeley, as visiting scholars. P.G.L. was supported by USDA Cooperative Extension through the University of California. R. Kaur and J. Wong were supported through a Gates Foundation Grand Challenges for Global Health award to Africa Harvest, Nairobi, Kenya. H.-Q. Tan was supported by the UC Berkeley College of Natural Resources Sponsored Projects for Undergraduate Research. The authors thank Dr. George Liang for the gift of the pGFP-PMI plasmid, Toshihiko Komari and Naoki Takemori from Japan Tobacco Inc., for helpful discussions, Dr. Lixin Zhu at UC Berkeley for the chemiluminescence analysis of GFP and Eric Trieu for technical help with PCR analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy G. Lemaux.

Additional information

Communicated by W. Harwood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurel, S., Gurel, E., Kaur, R. et al. Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep 28, 429–444 (2009). https://doi.org/10.1007/s00299-008-0655-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0655-1

Keywords

Navigation