Skip to main content

Genetic transformation and regeneration of Sesbania drummondii using cotyledonary nodes


Sesbania drummondii (Rydb.) Cory is a source for phytopharmaceuticals. It also hyperaccumulates several toxic heavy metals. Development of an efficient gene transfer method is an absolute requirement for the genetic improvement of this plant with more desirable traits due to limitations in conventional breeding methods. A simple protocol was developed for Agrobacterium-mediated stable genetic transformation of Sesbania. Agrobacterium tumefaciens strain EHA 101 containing the vector pCAMBIA 1305.1 having hptII and GUS plus genes was used for the gene transfer experiments. Evaluation of various parameters was carried out to assess the transformation frequency by GUS expression analysis. High transformation frequency was achieved by using 7-day-old precultured cotyledonary node (CN) explants. Further, the presence of acetosyringone (150 μM), infection of explants for 30–45 min and 3 days of cocultivation proved to be critical factors for greatly improving the transformation efficiency. Stable transformation of S. drummondii was achieved, and putative transgenic shoots were obtained on medium supplemented with hygromycin (25 mg l−1). GUS histochemical analysis of the putative transgenic tissues further confirmed the transformation event. Genomic Southern blot analysis was performed to verify the presence of transgenes and their stable integration. A transformation frequency of 4% was achieved for CN explants using this protocol.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4





Cotyledonary node




Hygromycin phosphotransferase


Indole acetic acid


Indole butyric acid


Luria broth


α-Naphthaleneacetic acid


Murashige and Skoog’s medium


Polymerase chain reaction


  • Anuradha TS, Jami SK, Datla RS, Kirti PB (2006) Genetic transformation of peanut (Arachis hypogaea L.) using cotyledonary node as explant and a promoterless gus::nptII fusion gene based vector. J Biosci 31:235–246

    Article  PubMed  CAS  Google Scholar 

  • Barik DP, Mohapatra U, Chand PK (2005) Transgenic grasspea (Lathyrus sativus L.): Factors influencing Agrobacterium-mediated transformation and regeneration. Plant Cell Rep 24:523–531

    Article  PubMed  CAS  Google Scholar 

  • Bean SJ, Gooding PS, Mullineaux PM, Davies DR (1997) A simple system for pea transformation. Plant Cell Rep 16:513–519

    Google Scholar 

  • Binns AN, Thomashow MF (1988) Cell biology of Agrobacterium infection and transformation of plants. Ann Rev Microbiol 42:575–606

    Article  CAS  Google Scholar 

  • Cheepala SB, Sharma NC, Sahi SV (2004) Rapid in vitro regeneration of Sesbania drummondii. Biol Plant 48:13–18

    Article  CAS  Google Scholar 

  • Cbunhal D, Dunyi Y, Harris PJC (1991) Genetic transformation of Sesbania species with Agrobacterium tumefaciens. Nitrogen Fixing Tree Res Rep 9:134–136

    Google Scholar 

  • DeBondt A, Eggermont K, Druart P, De Vil M, Goderis I, Vanderleyden J, Broekaert WF (1994) Agrobacterium-mediated transformation of apple (Malusdomestica Borkh.): an assessment of factors affecting gene transfer efficiency during early transformation steps. Plant Cell Rep 13:587–593

    CAS  Google Scholar 

  • Detrez C, Ndiaye S, Dreyfus B (1994) In vitro regeneration of the tropical multipurpose leguminous tree Sesbania grandiflora from cotyledon explants. Plant Cell Rep 14:87–93

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Evans DO, Rotar PP (1987) Sesbania in agriculture. Westview tropical agriculture series 8: 1–4. West View Press, Boulder

    Google Scholar 

  • Faircloth GT, Milan FR, Fernandez LMC (1996) Immunosuppressive pharmaceutical compositions new biological activity from a marine Agrobacterium sp. US Patent No. 5: 556, 777

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Husnain T, Malik T, Riazuddin S, Gordon MP (1997) Studies on expression of marker genes in chickpea. Plant Cell Tissue Organ Cult 49:7–16

    Article  CAS  Google Scholar 

  • Israr M, Sahi SV, Jain J (2006a) Cadmium accumulation and antioxidative responses in the Sesbania drummondii callus. Arch Environ Contam Toxicol 50:121–127

    Article  PubMed  CAS  Google Scholar 

  • Israr M, Sahi SV, Datta R, Sarkar D (2006b) Bioaccumulation and physiological effects of mercury in Sesbania drummondii. Chemosphere 65:591–598

    Article  PubMed  CAS  Google Scholar 

  • Jaiwal PK, Kumari R, Ignacimuthu S, Potrykus I, Sautter C (2001) Agrobacterium tumefaciens-mediated genetic transformation of mungbean (Vigna radiata L. Wilczek)—a recalcitrant grain legume. Plant Sci 161:239–247

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jha AK, Prakash S, Jain N, Nanda K, Gupta SC (2004) Micropropagation of Sesbania rostrata from the cotyledonary node. Biol Plant 48:289–292

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Olhoft PM, Flagel LE, Donovan CM, Somers DA (2003) Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216:723–735

    PubMed  CAS  Google Scholar 

  • Powell RG, Smith CR (1981) An investigation of the antitumor activity of S. drummondii. J Nat Prod 44:86–90

    Article  PubMed  CAS  Google Scholar 

  • Powell RG, Smith CR, Madrigal RV (1976) Antitumour activity of Sesbania vesicaria, S. punicea and S. drummondii seed extracts. Planta Med 30:1–8

    Article  PubMed  CAS  Google Scholar 

  • Popelka JC, Terryn N, Higgins THV (2004) Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Sci 167:195–206

    Article  CAS  Google Scholar 

  • Ruley AT, Sharma NC, Sahi SV (2006) Antioxidant defense in a lead accumulating plant Sesbania drummondii. Plant Physiol Biochem 42:899–906

    Google Scholar 

  • Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Technol 36:4676–4680

    Article  PubMed  Google Scholar 

  • Sahi SV, Israr M, Srivastava AK, Gardea-Torresdey JL, Parsons JG (2007) Accumulation, speciation and cellular localization of copper in Sesbania drummondii. Chemosphere 67:2257–2266

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (eds) (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Shahana S, Gupta S (2002) Somatic embryogenesis in Sesbania sesban var. bicolor: a multipurpose fabaceous woody species. Plant Cell Tissue Organ Cult 69:289–292

    Article  CAS  Google Scholar 

  • Shrivastava DK, Sanyal I, Singh BD, Amla DV (2001) Endogenous GUS-activities in Cajanus cajan L. and some grain legumes: selective suppression for expression of GUS reporter gene. J Plant Biol 28:243–250

    Google Scholar 

  • Sinha RK, Mallick R (1989) In vitro propagation of Sesbania grandiflora (L.) Poir. through callus culture. Cell Chromosome Res 112:1–8

    Google Scholar 

  • Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131:892–899

    Article  PubMed  CAS  Google Scholar 

  • Sonia, Saini R, Singh RP, Jaiwal PK (2007) Agrobacterium tumefaciens mediated transfer of Phaseolus vulgaris α-amylase inhibitor-1 gene into mungbean Vigna radiata (L.) Wilczek using bar as selectable marker. Plant Cell Rep 26:187–198

  • Srivastava AK, Venkatachalam P, Raghothama KG, Sahi SV (2007) Identification of lead-regulated genes by suppression subtractive hybridization in the heavy metal accumulator Sesbania drummondii. Planta 225:1353–1365

    Article  PubMed  CAS  Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629

    Article  Google Scholar 

  • Suzuki S, Nakano M (2002) Agrobacterium-mediated production of transgenic plants Muscari armeniacum Leichtl. ex Bak. Plant Cell Rep 20:835–841

    Article  CAS  Google Scholar 

  • Venkatachalam P, Geetha N, Jayabalan N, Saravanababu, Sita L (1998) Agrobacterium-mediated genetic transformation and regeneration of transgenic plants from cotyledon explants of groundnut (Arachis hypogaea L.) via somatic embryogenesis. J Plant Res 111:565–572

  • Yan-Xiu Z, Yi Dun, Harris PJC (1993) Plant regeneration from callus and explants of Sesbania spp. Plant Cell Tissue Org Cult 34:253–260

    Article  Google Scholar 

Download references


Authors would like to acknowledge Satish Cheepala for technical assistance and Dr. Linda Gonzales for critical review of the manuscript. Financial support for this work was provided by the Applied Research and Technology Program and the Faculty Scholarship Award from the Graduate studies of Western Kentucky University.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Shivendra V. Sahi.

Additional information

Communicated by P. Ozias-Akins.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Padmanabhan, P., Sahi, S.V. Genetic transformation and regeneration of Sesbania drummondii using cotyledonary nodes. Plant Cell Rep 28, 31–40 (2009).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Sesbania drummondii
  • Genetic transformation
  • Transgenic
  • Cotyledonary nodes