Skip to main content

Advertisement

Log in

Roles of microRNA in plant defense and virus offense interaction

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNA) that are around 22 nucleotides long non-protein-coding RNAs, play key regulatory roles in plants. Recent research findings show that miRNAs are involved in plant defense and viral offense systems. Advances in understanding the mechanism of miRNA biogenesis and evolution are useful for elucidating the complicated roles they play in viral infection networks. In this paper a brief summary of evolution of plant anti-virus defense is given and the function of miRNAs involved in plant-virus competition is highlighted. It is believed that miRNAs have several advantages over homology-dependent and siRNA-mediated gene silencing when they are applied biotechnologically to promote plant anti-virus defense. miRNA-mediated anti-virus pathway is an ancient mechanism with a promising future. However, using miRNAs as a powerful anti-virus tool will be better realized only if miRNA genomics and functions in plant viral infection are fully understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365

    Google Scholar 

  • Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005) Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 15:78–91

    Article  PubMed  CAS  Google Scholar 

  • Ambros V (2001) MicroRNAs: tiny regulators with great potential. Cell 107:823–826

    Article  PubMed  CAS  Google Scholar 

  • Anandalakshmi R, Marathe R, Ge X, Herr JM, Mau C, Mallory A, Pruss G, Bowman L, Vance VB (2000) A calmodulin-related protein that suppresses post transcriptional gene silencing in plants. Science 290:142–144

    Article  PubMed  CAS  Google Scholar 

  • Anandalakshmi R, Pruss GJ, Ge X, Marathe R, Mallory AC, Smith T, Vance V (1998) A viral suppressor of gene silencing in plants. Proc Natl Acad Sci USA 95:13079–13084

    Article  PubMed  CAS  Google Scholar 

  • Arazi T, Talmor-Neiman M, Stav R, Riese M, Huijser P, Baulcombe DC (2005) Cloning and characterization of micro-RNAs from moss. Plant J 43:837–848

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bartel B, Bartel DP (2003) MicroRNAs: at the root of plant development? Plant Physiol 132:709–717

    Article  PubMed  CAS  Google Scholar 

  • Bedell JA, Budiman MA, Nunberg A et al (2005) Sorghum genome sequencing by methylation filtration. PLoS Biol 3:103–115

    Article  Google Scholar 

  • Bennasser Y, Le SY, Yeung ML, Jeang KT (2004) HIV-1 encoded candidate microRNAs and their cellular targets. Retrovirology 1:43

    Article  PubMed  Google Scholar 

  • Bennasser Y, Le SY, Benkirane M, Jeang KT (2005) Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 22:607–619

    Article  PubMed  CAS  Google Scholar 

  • Billoud B, De Paepe R, Baulcombe D, Boccara M (2005) Identification of new small non-coding RNAs from tobacco and Arabidopsis. Biochimie 87:905–910

    Article  PubMed  CAS  Google Scholar 

  • Bonnet E, Wuyts J, Rouze P, Van de Peer Y (2004) Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA 101:11511–11516

    Article  PubMed  CAS  Google Scholar 

  • Cai X, Lu S, Zhang Z (2005) Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci USA 102:5570–5575

    Article  PubMed  CAS  Google Scholar 

  • Carmen SM, Juan AG (2006) MicroRNA-guided processing impairs plum pox virus replication, but the virus readily evolves to escape this silencing mechanism. J Virol 80:2429–2436

    Article  Google Scholar 

  • Carr JP, Marsh LE, Lomonossoff GP, Sekiya ME, Zaitlin M (1992) Resistance to tobacco mosaic virus induced by the 54-kDa gene sequence requires expression of the 54-kDa protein. Mol Plant Microbe Interact 5:397–404

    PubMed  CAS  Google Scholar 

  • Chendrimada TP, Finn KJ, Ji X, Baillat D, Gregory RI, Liebhaber SA, Pasquinelli AE, Shiekhattar R (2007) MicroRNA silencing through RISC recruitment of eIF6. Nature 447:823–828

    Article  PubMed  CAS  Google Scholar 

  • Dezulian T, Palatnik JF, Huson D, Weigel D (2005) Conservation and divergence of microRNA families in plants. Genome Biol 6:P13. doi:10.1186/gb-2005-6-11-p13

  • Doench JG, Petersen CP, Sharp PA (2003) SiRNAs can function as miRNAs. Genes Dev 17:438–442

    Article  PubMed  CAS  Google Scholar 

  • Dong XL, van Wezel R, Stanley J, Hong YG (2003) Functional characterization of the nuclear localization signal for a suppressor of post transcriptional gene silencing. J Virol 77:7026–7033

    Article  PubMed  CAS  Google Scholar 

  • Dorner S, Eulalio A, Huntzinger E, Izaurralde E (2007) Delving into the diversity of silencing pathways. EMBO Rep 1–7

  • Dunoyer P, Voinnet O (2005) The complex interplay between plant viruses and host RNA-silencing pathways. Curr Opin Plant Biol 8:415–423

    Article  PubMed  CAS  Google Scholar 

  • Dunoyer P, Lecellier CH, Parizotto EA, Himber C, Voinnet O (2004) Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16:1235–1250

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Rehwinke J, Stricker M, Huntzinger E, Yang SF, Doerks T, Dorner S, Bork P, Boutros M, Izaurralde E (2007) Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev 21:2558–2570

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Huntzinger E, Izaurralde E (2008) Getting to the root of miRNA-mediated gene silencing. Cell 132:9–14

    Article  PubMed  CAS  Google Scholar 

  • Floyd SK, Bowman JL (2004) Gene regulation: ancient microRNA target sequences in plants. Nature 428:485–486

    Article  PubMed  CAS  Google Scholar 

  • García JA, Simón-Mateo C (2006) A micropunch against plant viruses. Nat Biotechnol 24:1358–1359

    Article  PubMed  Google Scholar 

  • Guo HS, Ding SW (2002) A viral protein inhibits the long range signaling activity of the gene silencing signal. EMBO J 21:398–407

    Article  PubMed  CAS  Google Scholar 

  • Isam F, Voß Björn, Ralf R, Wolfgang RH, Wolfgang F (2007) Evidence for the rapid expansion of microRNA-mediated regulation in early land plant evolution. Plant Biol 7:13

    Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress induced miRNA. Mol Cell 14:787–799

    Article  PubMed  CAS  Google Scholar 

  • Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309:1577–1581

    Article  PubMed  CAS  Google Scholar 

  • Juan AG, Carmen SM (2006) A micropunch against plant viruses. Nat Biotechnol 24:1358–1359

    Article  Google Scholar 

  • Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A Jr, Zhu JK, Staskawicz BJ, Jin HL (2006) A pathogen-inducible endogenous siRNA in plant immunity. PNAS 103:18002–18007

    Article  PubMed  CAS  Google Scholar 

  • Li X, Zhang YZ (2005) Computational detection of microRNAs targeting transcription factor genes in Arabidopsis thaliana. Comput Biol Chem 29:360–367

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Li W, Jin YX (2005) Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa. Acta Biochim Biophys Sin 37:75–87

    Article  PubMed  Google Scholar 

  • Li SC, Shiau CK, Lin WC (2008) Vir-Mir db: prediction of viral microRNA candidate hairpins. Nucleic Acids Res 36:D184–D189. doi:10.1093/nar/gkm610

    Article  PubMed  CAS  Google Scholar 

  • Lindbo JA, Dougherty WG (1992) Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189:725–733

    Article  PubMed  CAS  Google Scholar 

  • Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Cullen BR (2004) Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and microRNA biogenesis. J Virol 78:12868–12876

    Article  PubMed  CAS  Google Scholar 

  • Lu SF, Sun YH, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203

    Article  PubMed  CAS  Google Scholar 

  • Ma ZL, Yang HY, Wang R, Tian B (2004) Construct hairpin RNA to fight against rice dwarf virus. Acta Bot Sin 46:332–336

    CAS  Google Scholar 

  • Maher C, Stein L, Ware D (2006) Evolution of Arabidopsis microRNA families through duplication events. Genome Res 16:510–519

    Article  PubMed  CAS  Google Scholar 

  • Meister G (2007) miRNAs: get an early start on translational silencing. Cell 131:25–28

    Article  PubMed  CAS  Google Scholar 

  • Mette MF, van der Winden J, Matzke M, Matzke AJ (2002) Short RNAs can identify new candidate transposable element families in Arabidopsis. Plant Physiol 130:6–9

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436

    Article  PubMed  CAS  Google Scholar 

  • Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2007) Corrigendum: expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 25:254

    Article  CAS  Google Scholar 

  • Omoto S, Fujii YR (2005) Regulation of human immunodeficiency virus-1 transcription by nef microRNA. J Gen Virol 86:751–755

    Article  PubMed  CAS  Google Scholar 

  • Omoto S, Ito M, Tsutsumi Y, Ichikawa Y, Okuyama H, Brisibe EA, Saksena NK, Fujii YR (2004) HIV-1 nef suppression by virally encoded microRNA. Retrovirology 1:44

    Article  PubMed  Google Scholar 

  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    Article  PubMed  CAS  Google Scholar 

  • Palauqui JC, Elmayan T, Pollien JM, Vaucheret H (1997) Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J 16:4738–4745

    Article  PubMed  CAS  Google Scholar 

  • Papp I, Mette MF, Aufsatz W, Daxinger L, Schauer SE, Ray A, van der Winden J, Matzke M, Matzke AJM (2003) Evidence for nuclear processing of plant microRNA and short interfering RNA precursors. Plant Physiol 132:1382–1390

    Article  PubMed  CAS  Google Scholar 

  • Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer S, Zavolan M, Grässer FA, Chien M, Russo JJ, Ju JY, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304:734–736

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van Dyk L, Ho CK, Shuman S, Chien M (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276

    Article  PubMed  CAS  Google Scholar 

  • Pillai RS, Bhattacharyya SN, Filipowicz W (2006) Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 17:118–126

    Article  Google Scholar 

  • Plasterk RHA (2002) RNA Silencing: The genome’s immune system. Science 296:1263–1265

    Article  PubMed  CAS  Google Scholar 

  • Qu F, Ren T, Morris TJ (2003) The coat protein of turnip crinkle virus suppresses posttranscriptional gene silencing at an early initiation step. J Virol 77:511–522

    Article  PubMed  CAS  Google Scholar 

  • Qiu CX, Xie FL, Zhu YY, Guo K, Huang SQ, Nie L, Yang ZM (2007) Computational identification of microRNAs and their targets in Gossypium hirsutum expressed sequence tags. Gene 395:49–61

    Article  PubMed  CAS  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  PubMed  CAS  Google Scholar 

  • Roth BM, Pruss GJ, Vancle VB (2004) Plant viral suppressors of RNA silencing. Virus Res 102:97–108

    Article  PubMed  CAS  Google Scholar 

  • Samols MA, Hu J, Skalsky RL, Renne R (2005) Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi’s sarcoma-associated herpesvirus. J Virol 79:9301–9305

    Article  PubMed  CAS  Google Scholar 

  • Saumet A, Lecellier CH (2006) Anti-viral RNA silencing: do we look like plants? Retrovirology 3:3

    Article  PubMed  Google Scholar 

  • Silhavy D, Burgyán J (2004) Effects and side-effects of viral RNA silencing suppressors on short RNAs. Trends Plant Sci 9:76–83

    Article  PubMed  CAS  Google Scholar 

  • Silhavy D, MolnaÂr A, Lucioli A, Szittya G, Hornyik C, Tavazza M, BurgyaÂn JZ (2002) A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J 21:3070–3080

    Article  PubMed  CAS  Google Scholar 

  • Simón-Mateo C, García JA (2006) MicroRNA-guided processing impairs Plum pox virus replication, but the virus readily evolves to escape this silencing mechanism. J Virol 80:2429–2436

    Article  PubMed  Google Scholar 

  • Sullivan CS, Ganem D (2005) MicroRNAs and viral infection. Mol Cell 20:3–7

    Article  PubMed  CAS  Google Scholar 

  • Sullivan CS, Grundhoff AT, Tevethia SJ, Pipas M, Ganem D (2005) SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435:682–686

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Girke T, Jain PK, Zhu JK (2005) Cloning and characterization of microRNAs from rice. Plant Cell 17:1397–1411

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed  CAS  Google Scholar 

  • Tang GL, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63

    Article  PubMed  CAS  Google Scholar 

  • Thomas CL, Leh V, Lederer C, Maule AJ (2003) Turnip crinkle virus coat protein mediates suppression of RNA silencing in Nicotiana benthamiana. Virology 306:33–41

    Article  PubMed  CAS  Google Scholar 

  • Tsuji H, Aya K, Ueguchi-Tanaka M (2006) GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. Plant J 47:427–444

    Article  PubMed  CAS  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S (2006) The genome of black cottonwood, Populus trichocarpa. Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 12:e1362. doi:10.1371/journal.pone.0001326

  • Wang JF, Zhou H, Chen YQ, Luo QJ, Qu LH (2004a) Identification of 20 microRNAs from Oryza sativa. Nucleic Acids Res 32:1688–1695

    Article  PubMed  CAS  Google Scholar 

  • Wang XJ, Reyes JL, Chua NH, Gaasterland T (2004b) Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5:R65. doi:10.1186/gb-2004-5-9-r65

  • Waterhouse PM, Wang MB, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411:834–842

    Article  PubMed  CAS  Google Scholar 

  • Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, Yang ZM (2007) Computational identification of novel microRNAs and targets in Brassica napus. FEBS Lett 581:1464–1474

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Kumar PP (2003) Posttranscriptional gene silencing in plants by RNA. Plant Cell Rep 22:167–174

    Article  PubMed  CAS  Google Scholar 

  • Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA (2005) Identification and characterization of plant microRNA using EST analysis. Cell Res 15:336–360

    Article  PubMed  Google Scholar 

  • Zhang BH, Pan XP, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  PubMed  CAS  Google Scholar 

  • Zhao T, Li GL, Mi SJ, Li S, Hannon GJ, Wang XJ, Qi YJ (2007) A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 21:1190–1203

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank all colleagues who have done work on phytopathology, miRNAs and related fields. We are grateful to Prof. Prakash Kumar for valuable advice on revision of the manuscript. We acknowledge the colleagues whose work in this rapidly changing field was not directly cited in this review due to space limitations and timing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Qin.

Additional information

Communicated by P. Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Yd., Gan, Qh., Chi, Xy. et al. Roles of microRNA in plant defense and virus offense interaction. Plant Cell Rep 27, 1571–1579 (2008). https://doi.org/10.1007/s00299-008-0584-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0584-z

Keywords

Navigation