Skip to main content
Log in

Direct transformation of the liverwort Marchantia polymorpha L. by particle bombardment using immature thalli developing from spores

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The liverwort, Marchantia polymorpha L., belongs to a group of basal land plants and is an emerging model for plant biology. We established a procedure to prepare sporangia of M. polymorpha under laboratory conditions by promoting its transition to reproductive development by far-red light irradiation. Here we report an improved direct transformation system of M. polymorpha using immature thalli developing from spores. Hygromycin-resistant transformants were obtained on selective media by transformation with a plasmid carrying the hygromycin-phosphotransferase gene (hpt) conferring hygromycin resistance in 4 weeks. The aminoglycoside-3″-adenyltransferase gene (aadA) conferring spectinomycin resistance was also successfully used as an additional selectable marker for nuclear transformation of M. polymorpha. The availability of the aadA gene in addition to the hpt gene should make M. polymorpha a versatile host for genetic manipulation. DNA gel-blot analyses indicated that transformed thalli carried a variable number of copies of the transgene integrated into the genome. Although the previous system using thalli grown from gemmae required a two-step selection in liquid and solid media for 8 weeks, the system reported here using thalli developing from spores allows generation of transformants in half the time by direct selection on solid media, facilitating genetic analyses in this model plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashton NW, Champagne CEM, Weiler T, Verkoczy LK (2000) The bryophyte Physcomitrella patens replicates extrachromosomal transgenic elements. New phytol 146:391–402

    Article  Google Scholar 

  • Barnes CR, Land WJG (1908) Bryological papers. II. The origin of the cupule of Marchantia. Bot Gaz 46:404–409

    Article  Google Scholar 

  • Benson-Evans K (1961) Environmental factors and bryophytes. Nature 191:255–260

    Article  Google Scholar 

  • Bretagne-Sagnard B, Chupeau Y (1996) Selection of transgenic flax plants is facilitated by spectinomycin. Transgenic Res 5:131–137

    Article  CAS  Google Scholar 

  • Bowman JL, Floyd SK, Sakakibara K (2007) Green genes—comparative genomics of the green branch of life. Cell 129:229–234

    Article  PubMed  CAS  Google Scholar 

  • Chiyoda S, Linley PJ, Yamato KT, Fukuzawa H, Yokota A, Kohchi T (2007) Simple and efficient plastid transformation system for the liverwort Marchantia polymorpha L. suspension-culture cells. Transgenic Res 16:41–49

    Article  PubMed  CAS  Google Scholar 

  • Courtoy R (1966) Contribution a l’étude du rôle de la lumière dans la sexualization du gamétophyte de Marchantia polymorpha L. Phytochem Photobiol 5:441–447

    Article  Google Scholar 

  • Dombrovska O, Qiu YL (2004) Distribution of introns in the mitochondrial gene nad1 in land plants: phylogenetic and molecular evolutionary implications. Mol Phylogenet Evol 32:246–263

    Article  PubMed  CAS  Google Scholar 

  • Fujisawa M, Hayashi K, Nishio T, Bando T, Okada S, Yamato KT, Fukuzawa H, Ohyama K (2001) Isolation of X and Y chromosome-specific DNA markers from a liverwort, Marchantia polymorpha, by representational difference analysis. Genetics 159:981–985

    PubMed  CAS  Google Scholar 

  • Hohe A, Reski R (2005) From axenic spore germination to molecular farming. One century of bryophyte in vitro culture. Plant Cell Rep 23:513–521

    Article  PubMed  CAS  Google Scholar 

  • Hughes SJ (1971) On conidia of fungi, and gemmae of algae, bryophytes, and pteridophytes. Can J Bot 49:1319–1339

    Article  Google Scholar 

  • Ishizaki K, Chiyoda S, Yamato KT, Kohchi T (2008) Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol. doi:10.1093/pcp/pcn085

    PubMed  Google Scholar 

  • Jones JDG, Jones DA, Bishop GJ, Harrison K, Carroll BJ, Scofield SR (1993) Use of the maize transposons Activator and Dissociation to show that phosphinothricin and spectinomycin resistance genes act non-cell-autonomously in tobacco and tomato seedlings. Transgenic Res 2:63–78

    Article  Google Scholar 

  • Kajikawa M, Yamato KT, Kanamaru H, Sakuradani E, Shimizu S, Fukuzawa H, Sakai Y, Ohyama K (2003a) MpFAE3, a β-ketoacyl-CoA synthase gene in the liverwort Marchantia polymorpha L., is preferentially involved in elongation of palmitic acid to stearic acid. Biosci Biotechnol Biochem 67:1667–1674

    Article  PubMed  CAS  Google Scholar 

  • Kajikawa M, Yamaoka S, Yamato KT, Kanamaru H, Sakuradani E, Shimizu S, Fukuzawa H, Ohyama K (2003b) Functional analysis of a β-ketoacyl-CoA synthase gene, MpFAE2, by gene silencing in the liverwort Marchantia polymorpha L. Biosci Biotechnol Biochem 67:605–612

    Article  PubMed  CAS  Google Scholar 

  • Larkin PJ, Gibson JM, Mathesius U, Weinman JJ, Gartner E, Hall E, Tanner GJ, Rolfe BG, Djordjevic MA (1996) Transgenic white clover. Studies with the auxin-responsive promoter, GH3, in root gravitropism and lateral root development. Transgenic Res 5:325–335

    Article  PubMed  CAS  Google Scholar 

  • Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T, Ohyama K (1992) Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. J Mol Biol 223:1–7

    Article  PubMed  CAS  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574

    Article  CAS  Google Scholar 

  • Okada S, Fujisawa M, Sone T, Nakayama S, Nishiyama R, Takenaka M, Yamaoka S, Sakaida M, Kono K, Takahama M, Yamato KT, Fukuzawa H, Brennicke A, Ohyama K (2000) Construction of male and female PAC genomic libraries suitable for identification of Y-chromosome-specific clones from the liverwort, Marchantia polymorpha. Plant J 24:421–428

    Article  PubMed  CAS  Google Scholar 

  • Qiu YL, Cho Y, Cox JC, Palmer JD (1998) The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394:671–674

    Article  PubMed  CAS  Google Scholar 

  • Qiu YL, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M, Dombrovska O, Lee J, Kent L, Rest J, Estabrook GF, Hendry TA, Taylor DW, Testa CM, Ambros M, Crandall-Stotler B, Duff RJ, Stech M, Frey W, Quandt D, Davis CC (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA 103:15511–15516

    Article  PubMed  CAS  Google Scholar 

  • Shikanai T, Endo T, Hashimoto T, Yamada Y, Asada K, Yokota A (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci USA 95:9705–9709

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Harper EC, Jones JDG, Maliga P (1990) Aminoglycoside–3″-adenyltransferase confers resistance to spectinomycin and streptomycin in Nicotiana tabacum. Plant Mol Biol 14:197–205

    Article  PubMed  CAS  Google Scholar 

  • Takenaka M, Yamaoka S, Hanajiri T, Shimizu-Ueda Y, Yamato KT, Fukuzawa H, Ohyama K (2000) Direct transformation and plant regeneration of the haploid liverwort Marchantia polymorpha L. Transgenic Res 9:179–185

    Article  PubMed  CAS  Google Scholar 

  • Vain P, De Buyser J, Bui Trang V, Haicour R, Henry Y (1995) Foreign gene delivery into monocotyledonous species. Biotechnol Adv 13:653–671

    Article  PubMed  CAS  Google Scholar 

  • Voth PD, Hamner KC (1940) Responses of Marchantia polymorpha to nutrient supply and photoperiod. Bot Gaz 102:169–205

    Article  CAS  Google Scholar 

  • Wann FB (1925) Some of the factors involved in the sexual reproduction of Marchantia polymorpha. Am J Bot 12:307–318

    Article  Google Scholar 

  • Yamaoka S, Takenaka M, Hanajiri T, Shimizu-Ueda Y, Nishida H, Yamato KT, Fukuzawa H, Ohyama K (2004) A mutant with constitutive sexual organ development in Marchantia polymorpha L. Sex Plant Reprod 16:253–257

    Article  Google Scholar 

  • Yamato KT, Ishizaki K, Fujisawa M, Okada S, Nakayama S, Fujishita M, Bando H, Yodoya K, Hayashi K, Bando T, Hasumi A, Nishio T, Sakata R, Yamamoto M, Yamaki A, Kajikawa M, Yamano T, Nishide T, Choi S-H, Shimizu-Ueda Y, Hanajiri T, Sakaida M, Kono K, Takenaka M, Yamaoka S, Kuriyama C, Kohzu Y, Nishida H, Brennicke A, Shin-i T, Kohara Y, Kohchi T, Fukuzawa H, Ohyama K (2007) Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system. Proc Natl Acad Sci USA 104:6472–6477

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Plasmid pCT08 was kindly provided by Dr. T. Shikanai. We thank Dr. F. Sato for the use of a biolistic delivery system. This work was supported by a Grant-in Aid for Scientific Research of Priority Areas from the Japanese Ministry of Education, Sports, Culture, Science, and Technology (No. 19039018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Kohchi.

Additional information

Communicated by R. Reski.

Shota Chiyoda and Kimitsune Ishizaki contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiyoda, S., Ishizaki, K., Kataoka, H. et al. Direct transformation of the liverwort Marchantia polymorpha L. by particle bombardment using immature thalli developing from spores. Plant Cell Rep 27, 1467–1473 (2008). https://doi.org/10.1007/s00299-008-0570-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0570-5

Keywords

Navigation