Skip to main content
Log in

Mammalian pro-apoptotic bax gene enhances tobacco resistance to pathogens

  • Biotic and Abiotic Stress
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

An Erratum to this article was published on 07 June 2011

Abstract

Emerging evidence suggests that plants and animals may share certain biochemical commonalities in apoptosis, or programmed cell death (PCD) pathways, though plants lack key animal apoptosis related genes. In plants, PCD has many important functions including a role in immunity and resistance to pathogen infection. In this study, a rice phenylalanine ammonia-lyase promoter is used to regulate the expression of the mouse pro-apoptotic bax gene in transgenic tobacco plants. Ectopic expression of the bax negatively affects the growth of transgenic plants. Nonetheless, results show that the bax transgene is induced upon infection by plant pathogens and accumulation of Bax is observed by Western blot analysis. By estimating and measuring the extent of cell death, release of active oxygen species, and accumulation defense-associated gene transcripts, it is shown that bax transgenic plants mount a more robust cell death response compared to control plants. The bax transgenic tobacco plants are also more resistant to infection by Phytophthora parasitica and Ralstonia solanacearum, but have no obvious resistance to tobacco mosaic virus. These results substantiate past studies and illustrate the powerful effects mammalian bax genes may have on plant development and disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarez ME, Pennell RL, Meijer RJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Glazebrook J, Clarke JD, Volko S, Dong XN (1997) The Arabidopsis NPR I gene that control systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63

    Article  PubMed  CAS  Google Scholar 

  • Chichkova NV, Kim SH, Titova ES, Kalkum M, Morozov VS, Rubtsov YP, Kalinina NO, Taliansky ME, Vartapetian AB (2003) A plant Caspase-like protease activated during the hypersensitive response. Plant Cell 16:157–171

    Article  PubMed  CAS  Google Scholar 

  • Clark MS (1997) Plant molecular biology: a laboratory manual. Springer, Berlin

    Google Scholar 

  • Coffeen WC, Wolpert TJ (2004) Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell 16:857–873

    Article  PubMed  CAS  Google Scholar 

  • Dannon EA, Wydra K (2004) Interaction between silicon amendment, bacterial wilt development and phenotype of Ralstonia solanacearum in tomato genotypes. Physiol Mol Plant Pathol 64:33–243

    Article  CAS  Google Scholar 

  • Dickinson M, Beynon J (2003) Annual plant review molecular plant pathology. V4 Sheffield Academic, Sheffield

    Google Scholar 

  • Dickman MB, Park YK, Oltersdorf T, Li W, Clemente T, French R (2001) Abrogation of disease development in plants expressing animal antiapoptotic genes. Proc Natl Acad Sci USA 98:6957–6962

    Article  PubMed  CAS  Google Scholar 

  • Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168:17–20

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist DG (1998) Programmed cell death in plant disease: the purpose and promise of cellular suicide. Annu Rev Phytopathol 36:393–414

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:91–923

    Article  CAS  Google Scholar 

  • Gopalan S, Wei W, He SY (1996) hrp gene-dependent induction of hin1: a plant gene activated rapidly by both harpins and the avrPto gene-mediated signal. Plant J 10:591–600

    Article  PubMed  CAS  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    Article  PubMed  CAS  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JT (1996) Programmed cell death: a way of life for plant. Proc Natl Acad Sci USA 93:12094–12097

    Article  PubMed  CAS  Google Scholar 

  • Hansen G (2000) Evidence for Agrobacterium-iduced apoptosis in maize cells. Mol Plant Microbe Interact 13:649–656

    Article  PubMed  CAS  Google Scholar 

  • Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M, Nishimura M, Hara-Nishimura I (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305:855–858

    Article  PubMed  CAS  Google Scholar 

  • Hückelhoven R, Dechert C, Kogel KH (2003) Overexpression of barley Bax inhibitor 1 induces breakdown of mlo-mediated penetration resistance to Blumeria graminis. Proc Natl Acad Sci USA 100:5555–5560

    Article  PubMed  CAS  Google Scholar 

  • Ji R, Zhang ZG, Wang YC, Zheng XB (2005) Phytophthora elicitor PB90 induced apoptosis in suspension cultures of tobacco. Chin Sci Bull 50:435–439

    Article  CAS  Google Scholar 

  • Kamoun S, West PV, Vleeshouwers VGAA, Groot KE, Govers F (1998) Resistance of Nicotiana Benthamiana to Phytophtoara infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell 10:1413–1425

    Article  PubMed  CAS  Google Scholar 

  • Kawai-Yamada M, Jin LH, Yoshinaga K, Hirata A, Uchimiya H (2001) Mammalian Bax induced plant cell death can be down regulated by overexpression of arabidopsis bax inhibitor-1 (AtBI-1). Proc Natl Acad Sci USA 98:12295–12330

    Article  PubMed  CAS  Google Scholar 

  • Kawai-Yamada M, Ohori Y, Uchimiya H (2004) Dissection of arabidopsis Bax inhibitor-1 suppressing Bax-, hydrogen peroxide-, and salicylic acid-induced cell death. Plant Cell 16:21–32

    Article  PubMed  CAS  Google Scholar 

  • Kawai-Yamada M, Saito Y, Jin LH, Ogawa T, Kim KM, Yu LH, Tone Y, Hirata A, Umeda M, Uchimiya H (2005) A novel arabidopsis gene causes Bax-like lethality in Saccharomyces cerevisiae. J Biol Chem 280:39468–39473

    Article  PubMed  CAS  Google Scholar 

  • Kiba A, Tomiyama H, Takahashi H, Hamada H, Ohnishi K, Okuno T, Hikichi Y (2003) Induction of resistance and expression of defense-related genes in tobacco leaves infiltrated with Ralstonia solanacearum. Plant Cell Physiol 44:287–295

    Article  PubMed  CAS  Google Scholar 

  • Kuwana T, Newmeyer DD (2003) Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol 15:1–9

    Article  CAS  Google Scholar 

  • Lacomme C, Cruz SS (1999) Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc Natl Acad Sci USA 96:7956–7961

    Article  PubMed  CAS  Google Scholar 

  • Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–853

    Article  PubMed  CAS  Google Scholar 

  • Lincoln JE, Richael C, Overduin B, Smith K, Bostock R, Gilchrist DG (2002) Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease. Proc Natl Acad Sci USA 99:15217–15221

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Schiff M, Czymmek K, Tallόczy Z, Levine B, Dinesh-Kumar SP (2005) Autophage regulates programmed cell death during the plant innate immune response. Cell 121:567–577

    Article  PubMed  CAS  Google Scholar 

  • Madeo F, Fröhlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Fröhlich KU (1999) Oxygen stress: a regulator of apoptosis in yeast. J Biol Chem 145:757–767

    CAS  Google Scholar 

  • Manon S, Chaudhuri B, Bueerin M (1997) Release of cytochrome c and decrease of cytochrome c oxidase in Bax expressing yeast cells, and prevention of these effects by coexpression of Bcl-xl. FEBS Lett 415:29–32

    Article  PubMed  CAS  Google Scholar 

  • Matsumura H, Nirasawa S, Kiba A, Urasaki N, Saitoh H, Ito M, Kawai-Yamada M, Uchimiya H, Terauchi R (2003) Overexpression of Bax inhibitor suppresses the fungal elicitor-induced cell death in rice (Oryza sativa L) cells. Plant J 33:425–434

    Article  PubMed  CAS  Google Scholar 

  • Mitsuhara I, Malik KA, Miura M, Ohashi Y (1999) Animal cell-death suppressors Bcl-xl and Ced-9 inhibit cell death in tobacco plants. Curr Biol 9:775–778

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A reversed medium forrapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pawlowski J, Kraft AS (2000) Bax-induced apoptotic cell death. Proc Natl Acad Sci USA 97:529–532

    Article  PubMed  CAS  Google Scholar 

  • Peng JL, Bao ZL, Ren HY, Wang JS, Dong HS (2003) Harpin-elicited hypersensitive cell death and pathogen resistance requires the NDR1 and EDS1 genes. Physiol Mol Plant Pathol 62:317–326

    Article  CAS  Google Scholar 

  • Priault M, Camougrand N, Kinnally KW, Vallette FM, Manon S (2003) Yeast as a tool to study Bax/mitochondrial interactions in cell death. FEMS Yeast Res 1576:1–13

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor, New York

    Google Scholar 

  • Shadle GL, Wesley SV, Korth KL, Chen F, Lamb C, Dixon RA (2003) Pheynlpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. Phytochemical 64:153–161

    Article  CAS  Google Scholar 

  • Torres MA, Dangl JL (2005) Function of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Biol 8:397–403

    Article  CAS  Google Scholar 

  • Wei MC, Zong WX, Cheng EHY, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic Bax and Bak: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Rogers SJ, Roossinck MJ (2004) Expression of antiapoptotic genes bcl-xl and ced-9 in tomato enhances resistance to viral-induced necrosis and abiotic stress. Proc Natl Acad Sci USA 101:15805–15810

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga K, Arimura SI, Hirata A, Niwa Y, Yun DJ, Tsutsumi N, Uchimiya H, Kawai-Yamada M (2005) Mammalian bax initiates plant cell death through organelle destruction. Plant Cell Rep 24:408–417

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JDG, Doke N (2003) Nicotiana benthamiana gp91phox Homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706–718

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZG, Wang YC, Li J, Ji R, Shen G, Wang SC, Zhou X, Zheng XB (2004) The role of SA in the hypersensitive response and systemic acquired resistance induced by the elicitor PB90 of Phytophthora boehmeriae. Physiol Mol Plant Pathol 65:31–38

    Article  CAS  Google Scholar 

  • Zhu Q, Dabi T, Beeche A, Yamamoto R, Lawton MA, Lamb C (1995) Cloning and properties of a rice gene encoding pheylalanine ammonia-lyase. Plant Mol Biol 29:535–550

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the NSFC project (30471124) and New Century Excellent Scholar Project of Ministry of Education of China (NCET-04-0503). We thank Prof. Guo Zejian (China Agricultural Univeristy, China) for donating PAL promoter as a gift and Prof. Guo Jianhua and Shao Ming (Nanjing Agricultural University, China) for providing bacteria strains. Dr. Mark Gijzen, Dr. Dinah Qutob and Dr. Katherine Dobinson, (Agriculture and Agri-Food Canada, Canada) are especially acknowledged for critical reading of the manuscript. We appreciate Dr. Paul Tyler (University of Melbourne, Australia) for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Yuanchao.

Additional information

Communicated by H.S. Judelson.

An erratum to this article is available at http://dx.doi.org/10.1007/s00299-011-1097-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suomeng, D., Zhengguang, Z., Xiaobo, Z. et al. Mammalian pro-apoptotic bax gene enhances tobacco resistance to pathogens. Plant Cell Rep 27, 1559–1569 (2008). https://doi.org/10.1007/s00299-008-0554-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0554-5

Keywords

Navigation