Skip to main content

Advertisement

Log in

Early developmental and stress responsive ESTs from mungbean, Vigna radiata (L.) Wilczek, seedlings

  • Genetics and Genomics
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Although mungbean (Vigna radiata (L.) Wilczek) is commonly used as human food; the genomic resources of this species available in databases are limited. This study aims to develop expressed sequence tag (EST) resources for mungbean genes informative to early seedling development and chilling response. Two mungbean varieties that differ in disease resistance were found to also differ in their susceptibility to chilling temperatures. A total of 1,198 ESTs were obtained from one cDNA library and four PCR-select cDNA subtraction libraries; among these 523 were clustered into 136 contigs and 675 were singletons. The 811 non-redundant uniESTs were compared to GenBank using the Basic Local Alignment Search Tool (BLAST) and WU-BLAST algorithms, of these only 489 uniESTs had significant sequence homology, which may be involved in resuming the metabolic activity of seedlings, switching on photomorphogenesis, fuelling photosynthesis and/or initiating the unique developmental programs. Their encoded proteins may associate with regulatory proteins to trigger a direct stress response or participate in acclimation to environmental stressors. The uniEST platform reported will enrich the genomic resources of mungbean for functional genomic research on seedling development and chilling response of tropical crops and provide targets for improving the chilling tolerance of the tropical crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ACC:

1-aminocyclopropane-1-carboxylate

AVRDC:

Asian Vegetable Research and Development Center—The World Vegetable Center

BLAST:

Basic Local Alignment Search Tool

CLS:

Cercospora leaf spot

CTAB:

Hexadecyltrimethylammonium bromide

dai:

Day after imbibition

DEPC:

Diethylpyrocarbonate

EIN2:

Ethylene insensitive 2

EST:

Expressed sequence tag

GPI:

Glycosylphosphatidylinositol

HSP:

Heat shock protein

LEA:

Late embryogenesis abundant

LTP:

Lipid transfer protein

MYMV:

Mungbean yellow mosaic virus

NCBI:

National Center for Biotechnology Information

PDF:

Plant defensin

PVP:

Polyvinylpyrrolidinone

SAM:

S-adenosylmethionine

TAIR:

The Arabidopsis Information Resource

References

  • Ali M, Malik IA, Silverstein KA, Ahmad B (1997) The mungbean green revolution in Pakistan. AVRDC publication no. 97-459. Tech Bull 24:1–66

    Google Scholar 

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152, doi: 10.1126/science.284.5423.2148

    Article  PubMed  CAS  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  PubMed  CAS  Google Scholar 

  • Borner GHH, Sherrier DJ, Stevens TJ, Arkin IT, Dupree P (2002) Prediction of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A genomic analysis. Plant Physiol 129:486–499

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL (2000) The YABBY gene family and abaxial cell fate. Curr Opin Plant Biol 3:17–22, doi: 10.1016/S1369-5266(99)00035-7

    Article  PubMed  CAS  Google Scholar 

  • Carretero-Paulet L, Ahumada I, Cunillera N, Rodríguez-Concepción M, Ferrer A, Boronat A, Campos N (2002) Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-d-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-d-erythritol 4-phosphate pathway. Plant Physiol 129:1581–1591, doi: 10.1104/pp.003798

    Article  PubMed  CAS  Google Scholar 

  • Chang MY, Chen SL, Lee CF, Chen YM (2001) Cold-acclimation and root temperature protection from chilling injury in chilling-sensitive mungbean (Vigna radiata L.) seedlings. Bot Bull Acad Sin 42:53–60

    Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol 11:693–699

    Google Scholar 

  • Chen YJ, Wu MF, Yu YH, Tam MF, Lin TY (2004) Developmental expression of three mungbean Hsc70s and substrate binding specificity of the encoded proteins. Plant Cell Physiol 45:1603–1614, doi: 10.1093/pcp/pch182

    Article  PubMed  CAS  Google Scholar 

  • Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743, doi: 10.1105/tpc.006494

    Article  PubMed  CAS  Google Scholar 

  • Cohn NS, Zhang L, Mitchell JP, Vierheller CZ (1994) Gibberellin-stimulated changes in abundance of two mRNAs in the developing shoot of dwarf peas (Pisum sativum L.). Int J Plant Sci 155:498–505

    Article  Google Scholar 

  • Duh PD, Du PC, Yen GC (1999) Action of methanolic extract of mung bean hulls as inhibitors of lipid peroxidation and non-lipid oxidative damage. Food Chem Toxicol 37:1055–1061

    Article  PubMed  CAS  Google Scholar 

  • Estévez JM, Cantero A, Reindl A, Reichler S, León P (2001) 1-deoxy-d-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem 276:22901–22909, doi:10.1074/jbc.M100854200

    Article  PubMed  Google Scholar 

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404

    Article  PubMed  CAS  Google Scholar 

  • Hanson J, Regan S, Engström P(2002) The expression pattern of the homeobox gene ATHB13 reveals a conservation of transcriptional regulatory mechanisms between Arabidopsis and hybrid aspen. Plant Cell Rep 21:81–89

    Article  CAS  Google Scholar 

  • Jabrin S, Ravanel S, Gambonnet B, Douce R, Rébeillé F (2003) One-carbon metabolism in plants. Regulation of tetrahydrofolate synthesis during germination and seedling development. Plant Physiol 131:1431–1439, doi: 10.1104/pp.016915

    Article  PubMed  CAS  Google Scholar 

  • Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  PubMed  CAS  Google Scholar 

  • Johnson PR, Ecker JR (1998) The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet 32:227–254

    Article  PubMed  CAS  Google Scholar 

  • Kim JC, Lee SH, Cheong YH, Yoo CM, Lee SI, Chun HJ, Yun DJ, Hong JC, Lee SY, Lim CO, Cho MJ (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J 25:247–259, doi: 10.1046/j.1365-313x.2001.00947.x

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36, doi: 10.1016/S1369-5266(01)00219-9

    Article  PubMed  CAS  Google Scholar 

  • Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175, doi: 10.1105/tpc.105.035568

    Article  PubMed  CAS  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    Article  PubMed  CAS  Google Scholar 

  • Lorence A, Chevone BI, Mendes P, Nessler CL (2004) myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134:1200–1205, doi: 10.1104/pp.103.033936

    Article  PubMed  CAS  Google Scholar 

  • Lyons JM (1973) Chilling injury in plants. Annu Rev Plant Physiol 24:445–466

    Article  CAS  Google Scholar 

  • Majee M, Maitra S, Dastidar KG, Pattnaik S, Chatterjee A, Hait NC, Das KP, Majumder AL (2004) A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice. J Biol Chem 279:28539–28552, doi: 10.1074/jbc.M310138200

    Article  PubMed  CAS  Google Scholar 

  • Miller G, Mittler R (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot 98:279–288, doi: 10.1093/aob/mcl107

    Article  PubMed  CAS  Google Scholar 

  • Masoudi-Nejad A, Tonomura K, Kawashima S, Moriya Y, Suzuki M, Itoh M, Kanehisa M, Endo T, Goto S (2006) EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomics DNA fragments. Nucleic Acids Res 34:W459–W462, doi: 10.1093/nar/gk1066

    Article  PubMed  CAS  Google Scholar 

  • Moons A, Bauw G, Prinsen E, Van Montagu M, Van der SD (1995) Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties. Plant Physiol 107:177–186

    Google Scholar 

  • Pagni M, Ioannidis V, Cerutti L, Zahn-Zabal M, Jongeneel CV, Falquet L (2004) MyHits: a new interactive resource for protein annotation and domain identification. Nucleic Acids Res 32:W332–W335, doi: 10.1093/nar/gkh479

    Article  PubMed  CAS  Google Scholar 

  • Pillai MA, Akiyama T (2004) Differential expression of an S-adenosyl-l-methionine decarboxylase gene involved in polyamine biosynthesis under low temperature stress in japonica and indica rice genotypes. Mol Genet Genomics 271:141–149, doi: 10.1007/s00438-003-0963-7

    Article  PubMed  CAS  Google Scholar 

  • Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D (1995) Phytochromes: photosensory perception and signal transduction. Science 268:675–680, doi: 10.1126/science.7732376

    Article  PubMed  CAS  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767, doi: 10.1104/pp.103.025742

    Article  PubMed  CAS  Google Scholar 

  • Ramírez M, Graham MA, Blanco-López L, Silvente S, Medrano-Soto A, Blair MW, Hernández G, Vance CP, Lara M (2005) Sequencing and analysis of common bean ESTs: building a foundation for functional genomics. Plant Physiol 137:1211–1227, doi: 10.1104/pp.104.054999

    Article  PubMed  Google Scholar 

  • Smith A (1985) Polyamines. Annu Rev Plant Physiol 36:117–143, doi: 10.1146/annurev.pp.36.060185.001001

    Article  CAS  Google Scholar 

  • Tocquin P, Corbesier L, Havelange A, Pieltain A, Kurtem E, Bernier G, Perilleux C (2003) A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana. BMC Plant Biol 3:2, doi: 10.1186/1471–2229-3-2

    Article  PubMed  Google Scholar 

  • von Arnim A, Deng XW (1996) Light control of seedling development. Annu Rev Plant Physiol Plant Mol Biol 47:215–243, doi: 10.1146/annurev.arplant.47.1.215

    Article  Google Scholar 

  • Weinberger K (2005) Assessment of the nutritional impact of agricultural research: the case of mungbean in Pakistan. Food Nutr Bull 26:287–294

    PubMed  Google Scholar 

  • Wu SJ, Wang JS, Lin CC, Chang CH (2001) Evaluation of hepatoprotective activity of legumes. Phytomedicine 8:213–219

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Spollen WG, Sharp RE, Hetherington PR, Fry SC (1994) Root growth maintenance at low water potentials (increased activity of xyloglucan endotransglycosylase and its possible regulation by abscisic acid). Plant Physiol 106:607–615

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183, doi: 10.1105/tpc.000596

    Article  PubMed  CAS  Google Scholar 

  • Yang MT, Chen SL, Lin CY, Chen YM (2005) Chilling stress suppresses chloroplast development and nuclear gene expression in leaves of mung bean seedlings. Planta 221:374–385, doi: 10.1007/s00425-004-1451-y

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S (1994) Low temperature-induced cytoplasmic acidosis in cultured mung bean (Vigna radiata [L.] Wilczek) cells. Plant Physiol 104:1131–1138

    PubMed  CAS  Google Scholar 

  • Zheng J, Zhao J, Zhang J, Fu J, Gou M, Dong Z, Hou W, Huang Q, Wang G (2006) Comparative expression profiles of maize genes from a water stress-specific cDNA macroarray in response to high-salinity, cold or abscisic acid. Plant Sci 170:1125–1132, doi: 10.1016/j.plantsci.2006.01.019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. C.C. Chen for insightful discussion. This work was supported by National Science Council grants NSC 94-2317-B-007-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsai-Yun Lin.

Additional information

Communicated by D. Somers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 184 kb)

(DOC 46 kb)

(DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, LR., Markhart, A.H., Shanmugasundaram, S. et al. Early developmental and stress responsive ESTs from mungbean, Vigna radiata (L.) Wilczek, seedlings. Plant Cell Rep 27, 535–552 (2008). https://doi.org/10.1007/s00299-007-0488-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0488-3

Keywords

Navigation