Skip to main content
Log in

High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript


Brachypodium distachyon (Brachypodium) is a small grass with biological attributes (rapid generation time, small genome, diploid accessions, small stature and simple growth requirements) that make it suitable for use as a model system. In addition, a growing list of genomic resources have been developed or are currently under development including: cDNA libraries, BAC libraries, EST sequences, BAC end sequences, a physical map, genetic markers, a linkage map and, most importantly, the complete genome sequence. To maximize the utility of Brachypodium as a model grass it is necessary to develop an efficient Agrobacterium-mediated transformation system. In this report we describe the identification of a transformable inbred diploid line, Bd21-3, and the development of a transformation method with transformation efficiencies as high as 41% of co-cultivated calluses producing transgenic plants. Conducting the co-cultivation step under desiccating conditions produced the greatest improvement in transformation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others



Callus inducing media


Embryogenic callus


Expressed sequence tag


Bacterial artificial chromosome


2,4-Dichlorophenoxyacetic acid


Linsmaier and Skoog basal medium


Murashige and Skoog salts and vitamins


  • Arumuganathan K, Earle E (1991) Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Rep 9:229–241

    CAS  Google Scholar 

  • Ausubel F, Brent R, Kingston R, Moore D, Seidman J, Smith J, Struhl K (1996) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Bablak P, Draper J, Davey M, Lynch P (1995) Plant regeneration and micropropagation of Brachypodium distachyon. Plant Cell Tissue Organ Cult 42:97–107

    Article  Google Scholar 

  • Bennett M, Leitch I (2005) Nuclear DNA amounts in Angiosperms: progress, problems and prospects. Ann Bot 95:45–90

    Article  PubMed  CAS  Google Scholar 

  • Cheng M, Hu T, Layton J, Liu C, Fry J (2003) Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell Dev Biol Plant 39:595–604

    Article  CAS  Google Scholar 

  • Christiansen P, Didion T, Andersen C, Folling M, Nielsen K (2005) A rapid and efficient transformation protocol for the grass Brachypodium distachyon. Plant Cell Rep 23:751–758

    Article  PubMed  CAS  Google Scholar 

  • DOE (ed) (2006) Breaking the biological barriers to cellulosic ethanol: a Joint Research Agenda. U.S. Department of Energy, Office of Science and Office of Energy Efficiency

  • Draper J, Mur L, Jenkins G, Ghosh-Biswas G, Bablak P, Hasterok R, Routledge A (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 127:1539–1555

    Article  PubMed  CAS  Google Scholar 

  • Feldmann K (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J 1:71–82

    Article  CAS  Google Scholar 

  • Hasterok R, Marasek A, Donnison I, Armstead I, Thomas A, King I, Wolny E, Idziak D, Draper J, Jenkins G (2006) Alignment of the genomes of Brachypodium distachyon and temperate cereals and grasses using bacterial artificial chromosome landing with fluorescence in situ hybridization. Genetics 173:349–362

    Article  PubMed  CAS  Google Scholar 

  • Huo N, Gu Y, Lazo G, Vogel J, Coleman-Derr D, Luo M, Thilmony R, Garvin D, Anderson O (2006) Construction and characterization of two BAC libraries from Brachypodium distachyon, a new model for grass genomics. Genome 49:1099–1108

    Article  PubMed  CAS  Google Scholar 

  • Huo N, Lazo G, Vogel J, You F, Ma Y, Hayden D, Colemann-Derr D, Hill T, Dvorak J, Anderson O, Luo M, Gu Y (2007) The nuclear genome of Brachypodium distachyon: analysis of BAC end sequences. Funct Integr Genomics (in press)

  • Jeon J, Lee S, Jung K, Jun S, Jeong D, Lee J, Kim C, Jang S, Lee S, Yang K, Nam J, An K, Han M, Sung R, Choi H, Yu J, Choi J, Cho S, Cha S, Kim S, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570

    Article  PubMed  CAS  Google Scholar 

  • Kohli A, Twyman R, Abranches R, Wegel E, Stoger E, Christou P (2003) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258

    Article  PubMed  CAS  Google Scholar 

  • Lazo G, Stein P, Ludwig R (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967

    Article  PubMed  CAS  Google Scholar 

  • Svitashev S, Somers D (2002) Characterization of transgene loci in plants using FISH: a picture is worth a thousand words. Plant Cell Tissue Organ Cult 69:205–214

    Article  CAS  Google Scholar 

  • Thilmony R, Guttman M, Chiniquy D, Blechl A (2006) pGPro1, a novel binary vector for monocot promoter characterization. Plant Mol Biol Rep 24:57–69

    Article  CAS  Google Scholar 

  • Tyagi A, Mohanty A (2000) Rice transformation for crop improvement and functional genomics. Plant Sci 158:1–18

    Article  PubMed  CAS  Google Scholar 

  • Vogel J, Gu Y, Twigg P, Lazo G, Laudencia-Chingcuanco D, Hayden D, Donze T, Vivian L., Stamova B, Coleman-Derr D (2006a) EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theor Appl Genet 113:186–195

    Article  PubMed  CAS  Google Scholar 

  • Vogel J, Garvin D, Leong O, Hayden D (2006b) Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon. Plant Cell Tiss Org Cult 85:199–211

    Google Scholar 

  • Wang M, Li Z, Matthews P, Upadhyaya N, Waterhouse P (1998) Improved vector for Agrobacterium tumefaciens-mediated transformation of monocot plants. Acta Hortic 461:401–408

    CAS  Google Scholar 

Download references


We would like to thank David Garvin for seeds of PI 254867, Roger Thilmony for vector pGPro2, James Thomson for vectors p#1, p#4, p#6 and Naxin Huo for technical assistance. This work was supported by USDA CRIS project 5325-21000-013-00 “Biotechnological Enhancement of Energy Crops.”

Author information

Authors and Affiliations


Corresponding author

Correspondence to John Vogel.

Additional information

Communicated by M. Jordan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogel, J., Hill, T. High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Rep 27, 471–478 (2008).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: