Skip to main content
Log in

Analysis of molecular markers in three different tomato cultivars exposed to ozone stress

  • Biotic and Abiotic Stress
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Three differentially expressed cDNAs have been isolated from ozone treated tomato seedlings. Their level of expression after ozone exposure has been analysed in three tomato cultivars with different sensitivity to ozone (Nikita, Alisa Craig and Valenciano). These comparative analyses have been extended to a number of genes involved in antioxidative, wounding or pathogenesis responses, showing several differences among cultivars that could be related with their different sensitivity to ozone. Gene response to ozone was affected not only by the period and dose of ozone exposure (short time or chronic), but also by growth conditions (controlled growth chamber or field). Comparison of gene expression patterns puts on evidence the needing of validation in field of experiments performed with plants grown under controlled conditions. Our results suggest that changes in genes expression, observed after ozone treatment in field, are affected by additional factors related to environmental clues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bae GY, Nakajima N, Ishizuka K, Kondo N (1996) The role in ozone phytotoxicity of the evolution of ethylene upon induction of 1-aminocyclopropane-1-carboxylic acid synthase by ozone fumigation in tomato plants. Plant Cell Physiol 37:129–134

    CAS  Google Scholar 

  • Bahl A, Loitsch SM, Kahl G (1995) Transcriptional activation of plant defence genes by short-term air pollutant stress. Environ Pollut 89:221–227

    Article  PubMed  CAS  Google Scholar 

  • Baier A, Kandlbinder A, Golldack D, Dietz KJ (2005) Oxidative stress and ozone, perception, signalling and response. Plant Cell Environ 28:1012–1020

    Article  CAS  Google Scholar 

  • Bytnerowicz A, Arbaugh MJ, Alonso R (2003) Ozone air pollution in the Sierra Nevada: distribution and effects on forests. In: Krupa SV (ed) Developments in environmental science 2, Elsevier, Amsterdam, pp 402

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence: a genomics approach. Plant Biotechnol J 1:3–22

    Article  PubMed  CAS  Google Scholar 

  • Conklin PL, Last R (1995) Differential accumulation of antioxidant mRNAs in Arabidopsis thaliana exposed to ozone. Plant Physiol 109:203–212

    Article  PubMed  CAS  Google Scholar 

  • Craker L (1971) Ethylene production from ozone injured plants. Environ Pollut 1:299–304

    Article  Google Scholar 

  • Debeaujon I, Peeters AJM, Léon-Kloosterziel KM, Koornneef M (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13:853–871

    Article  PubMed  CAS  Google Scholar 

  • Eckardt NA (2001) Move it on out with MATEs. Plant Cell 13:1477–1480

    Article  PubMed  CAS  Google Scholar 

  • Elvira S, Alonso R, Castillo F, Gimeno BS (1998) On the response of pigments and antioxidants of Pinus halepensis seedlings to Mediterranean climatic factors and long-term ozone exposure. New Phytol 138:419–432

    Article  CAS  Google Scholar 

  • Guidi L, Degl’Innocenti E, Genovesi S, Soldatini GF (2005) Photosynthetic process and activities of enzymes involved in the phenylpropanoid pathway in resistant and sensitive genotypes of Lycopersicon esculentum L. exposed to ozone. Plant Sci 168:153–160

    Article  CAS  Google Scholar 

  • Gunthardt-Goerg MS, Matyssek R, Scheidegger C, Keller T (1993) Differentiation and structural decline in the leaves and bark of birch (Betula pendula) under low ozone concentrations. Trees Struct Funct 7:104–114

    Google Scholar 

  • Halperin T, Zheng B, Itzhaki H, Clarke AK, Adam Z (2001) Plant mitochondria contain proteolytic and regulatory subunits of the ATP-dependent Clp protease. Plant Mol Biol 45:461–468

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Yagi M, Koizumi N, Kusano T, Sano H (2000) Screening of wound-responsive genes identifies an immediate-early expressed gene encoding a highly charged protein in mechanically wounded tobacco plants. Plant Cell Physiol 41:684–691

    Article  PubMed  CAS  Google Scholar 

  • Heath RL (1994) Possible mechanisms for the inhibition of photosynthesis by ozone. Photosynth Res 39:439–451

    Article  CAS  Google Scholar 

  • Krupa SV (1996) The role of atmospheric chemistry in the assessment of crop growth and productivity. In: Yumus M, Iqbal M (eds) Plant response to air pollution, Wiley, London, pp 35–74

    Google Scholar 

  • Lefohn AS (1992) Surface level ozone exposure and their effects on vegetation. Lewis, London, p 366

  • Liang P, Pardee AB (1998) Differential display. A general protocol. Mol Biotechnol 10:261–267

    Article  PubMed  CAS  Google Scholar 

  • Lim PO, Woo HR, Nam HG (2003) Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci 8:272–278

    Article  PubMed  CAS  Google Scholar 

  • Maccarrone M, Veldink GA, Vliegenhardt JFG (1992) Thermal injury and ozone stress affect soybean lipoxygenase expression. FEBS Lett 309:225–230

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama T, Tamaoki M, Nakajima N, Aono M, Kubo A, Moriya S, Ichihara T, Suzuki O, Saji H (2002) cDNA microarray assessment for ozone-stressed Arabidopsis thaliana. Environ Pollut 117:191–4

    Article  PubMed  CAS  Google Scholar 

  • Matyssek R, Sandermann H (2003) Impact of ozone on trees: an ecophysiological perspective. Progress in botany 64. Springer, Heidelberg, pp 349–404

    Google Scholar 

  • McCrady JK, Andersen CP (2000) The effect of ozone on below-ground carbon allocation in wheat. Environ Pollut 107:465–472

    Article  PubMed  CAS  Google Scholar 

  • Miller JD, Arteca RN, Pell EJ (1999) Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiol 120:1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki S, Fredricksen M, Hollis KC, Poroyko V, Shepley D, Galbaith DW, Long SP, Bohnert HJ (2004) Transcript expression profiles of Arabidopsis thaliana grown under controlled conditions and open-air elevated concentrations of CO2 and O3. Field Crop Res 90:47–59

    Article  Google Scholar 

  • Ojanperä K, Pättsikkä E, Ylarantä E (1998) Effects of low ozone exposure of spring wheat on net CO2 uptake, rubisco, leaf senescence and grain filling. New Phytol 138:451–460

    Article  Google Scholar 

  • Pell EJ, Sinn JP, Eckardt N, Vinten-Johansen C, Winner WE, Mooney HA (1993) Response of radish to multiple stresses II. Influence of season and genotype on plant response to ozone and soil moisture deficit. New Phytol 115:439–446

    Article  Google Scholar 

  • Pell EJ, Schlagnhaufer CD, Arteca RN (1997) Ozone induced oxidative stress: mechanism of action and reaction. Physiol Plantarum 100:264–273

    Article  CAS  Google Scholar 

  • Rao MV, Davis KR (2001) The physiology of ozone induced cell death. Planta 213:682–690

    Article  PubMed  CAS  Google Scholar 

  • Ruzsa SM, Mylona P, Scandalios JG (1999) Differential response of antioxidant genes in maize leaves exposed to ozone. Redox Report 4:95–103

    Article  PubMed  CAS  Google Scholar 

  • Reiling K, Davison AW (1995) Effects of ozone on stomatal conductance and photosynthesis in populations of Plantago major L. New Phytol 129:587–594

    Article  CAS  Google Scholar 

  • Saitanis CJ, Karandinos MG (2002) Effects of ozone on tobacco (Nicotiana tabacum L) varieties. J Agron Crop Sci 188:51–58

    Article  CAS  Google Scholar 

  • Salam MA, Soja G (1995) Bush bean (Phaseolus vulgaris L) leaf injury, photosynthesis and stomatal functions under elevated ozone levels. Water Air Soil Pollut 85:1533–1538

    Article  CAS  Google Scholar 

  • Sandermann H Jr (1996) Ozone and plant health. Annu Rev Phytopathology 34:347–66

    Article  CAS  Google Scholar 

  • Sandermann H Jr (1998) Ozone: an air pollutant acting as a plant-signaling molecule. Naturwissenschaften 85:369–75

    Article  CAS  Google Scholar 

  • Sanz MJ, Millán MM (2000) Ozone in the Mediterranean region: Evidence of injury to vegetation. In: Innes JL, Oleskyn J (eds) Forest dynamics in heavily polluted regions. CAB International, London, pp 165–192

    Google Scholar 

  • Sävenstrand H, Brosche M, Aengehagen M, Strid A (2000) Molecular markers for ozone stress isolated by suppression subtractive hybridization: specificity of gene expression and identification of a novel stress-regulated gene. Plant Cell Environ 23:689–700

    Article  Google Scholar 

  • Schraudner MD, Ernst D, Langebartels C, Sandermann H (1992) Biochemical plant response to ozone. III. Activation of defence-related proteins b-1,3-glucanase and chitinase in tobacco leaves. Plant Physiol 99:1321–1328

    Article  PubMed  CAS  Google Scholar 

  • Sharma YK, Davis KR (1994) Ozone-induced expression of stress-related genes in Arabidopsis thaliana. Plant Physiol 105:1089–1096

    PubMed  CAS  Google Scholar 

  • Sharma YK, Davis KR (1997) The effects of ozone on antioxidant responses in plants. Free Radic Biol Med 23:480–488

    Article  PubMed  CAS  Google Scholar 

  • Shirley BW (1996) Flavonoid biosynthesis: ‘new’ functions for an ‘old’ pathway. Trends Plant Sci 1:377–382

    Article  Google Scholar 

  • Tamaoki M, Nakajima N, Kubo A, Aono M, Matsuyama T, Saji H (2003a) Transcriptome analysis of O3-exposed Arabidopsis reveals that multiple signal pathways act mutually antagonistically to induce gene expression. Plant Mol Biol 53:443–456

    Article  PubMed  CAS  Google Scholar 

  • Tamaoki M, Matsuyama T, Kanna M, Nakajima N, Kubo A, Aono M, Saji H (2003b) Differential ozone sensitivity among Arabidopsis accessions and its relevance to ethylene synthesis. Planta 216:552–60

    PubMed  CAS  Google Scholar 

  • Tingey DT, Standley C, Field RW (1976) Stress ethylene evolution: a measure of ozone effects on plants. Atmos Environ 10:969–974

    Article  PubMed  CAS  Google Scholar 

  • US EPA (1996) Air quality criteria for ozone and other photochemical oxidants. National Center for Environmental Assessment, Research Triangle Park, NC

  • Willekens H, Van Camp W, Van Montagu M, Inze D, Langebartels C, Sandermann H Jr (1994) Ozone, sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L. Plant Physiol 106:1007–1014

    PubMed  CAS  Google Scholar 

  • Winner WE (1994) Mechanistic analysis of plant responses to air pollution. Ecol Appl 4:651–661

    Article  Google Scholar 

  • Zheng Y, Stevenson KJ, Barrowclife R, Chen S, Wang H, Barnes JD (1998) Ozone levels in Chongquing: a potential threat to crop plants commonly grown in the region?. Environ Pollut 99:299–308

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Shimizu H, Barnes JD (2002) Limitations to CO2 assimilation in ozone-exposed leaves of Plantago major. New Phytol 155:67–78

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This article is based on a study that formed part of the European project TOMSTRESS (engineering tomato against environmental stress FAIR5-CT97-3493). It was also funded by Spain govern in Comisión nacional de ciencia y tecnologia (AGF1998-1600-CE). Our special thanks to Generalitat Valenciana and Bancaixa for their continuous support to Fundación CEAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Carrasco.

Additional information

Communicated by W.T. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marco, F., Calvo, E., Carrasco, P. et al. Analysis of molecular markers in three different tomato cultivars exposed to ozone stress. Plant Cell Rep 27, 197–207 (2008). https://doi.org/10.1007/s00299-007-0435-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0435-3

Keywords

Navigation