Skip to main content
Log in

Assessment of genetic and epigenetic stability in long-term in vitro shoot culture of pea (Pisum sativum L.)

  • Genetics and Genomics
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

In vitro clonal propagation of plants should generate identical copies of the selected genotype. However, associated stress might result in a breakdown of control mechanisms and consequent instability of the genome. We have used several molecular methods to assess the genetic stability of long-term propagated (24 years) multiple shoot in vitro culture of pea (Pisum sativum L.). We focused on assessing the stability of repetitive sequences, such as simple sequence repeats (SSR) and retrotransposons, both comprising a large part of genome. No differences were found when seedlings (Co-2004) or original seed (Co-1982) controls and long-term or newly established in vitro (one subculture cycle) samples were investigated by the SSR, inter-repeats (ISSR) or inter-retrotransposon amplified polymorphism (IRAP) method. However, the more global amplified fragment length polymorphism (AFLP) and particularly the methylation sensitive MSAP methods detected 11 and 18% polymorphism among samples, respectively. Interestingly, investigation of the global cytosine methylation status by HPCE measurement revealed no statistically significant differences. Some evidence of retrotransposon re-arrangement was observed by sequence-specific amplification polymorphism. This occurred mostly in the abundant Ty3-gypsy type Cyclop element and to a smaller extent in the Ogre element. Alternatively, no polymorphism was detected among the PDR-1 element of the Ty1-copia type retrotransposon. Based on these results, multiple shoot culture of pea maintained over a long period may be considered as a true to type multiplication method of the original genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

5mdC:

5-Methyldeoxycytidine

HPCE:

High performance capillary electrophoresis

HPLC:

High performance liquid chromatography

ISSR:

Inter-simple sequence repeats

IRAP:

Inter retrotransposon amplification polymorphism

MSAP:

Methylation sensitive amplified polymorphism

MSB:

Murashige and Skoog (1962) basal medium with vitamins after Gamborg et al. (1968)

PAGE:

Polyacrylamide gel electrophoresis

SD:

Standard deviation

SSR:

Simple sequence repeats

AFLP:

Amplified fragment length polymorphism

SSAP:

Sequence specific amplified polymorphism

References

  • Alwee SS, Van der Linden CG, Van der Schoot J, de Folter S, Angenent C, Cheah SC, Smulders MJM (2006) Characterization of oil palm MADS box genes in relation to the mantled flower abnormality. Plant Cell Tissue Organ Cult 85:331–344

    Article  Google Scholar 

  • Amberger LA, Shoemaker RC, Palmer RG (1992a) Inheritance of two independent isozyme variants in soybean plants derived from tissue culture. Theor Appl Genet 84:600–607

    Article  Google Scholar 

  • Amberger LA, Palmer RG, Shoemaker RC (1992b) Analysis of culture-induced variation in soybean. Crop Sci 32:1103–1108

    Article  Google Scholar 

  • Baranger A, Aubert G, Arnau G, Lainé AL, Deniot G, Potier J, Weinachter C, Lejeune-Hénaut I, Lallemand J, Burstin J (2004) Genetic diversity within Pisum sativum using protein- and PCR-based markers. Theor Appl Genet 108:1309–1321

    Article  PubMed  CAS  Google Scholar 

  • Barwale UB, Widholm JM (1987) Somaclonal variation in plants regenerated from cultures of soybean. Plant Cell Rep 6:365–368

    Article  Google Scholar 

  • Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  • Baurens FC, Bonnot F, Bienvenu D, Causse S, Legavre T (2003) Using SD-AFLP and MSAP to assess CCGG methylation in the banana genome. Plant Mol Biol Rep 21:339–348

    CAS  Google Scholar 

  • Bernardi R, Natali L, Polizzi E, Cavallini A, Durante M (1995) Gene variations in pea (Pisum sativum L.) plants regenerated from long-term cultures. Agric Med 125:177–183

    Google Scholar 

  • Bowcock A, Ruiz-Linares J, Tomfohrde E, Minch J, Kidd J, Cavallini-Sforza L (1994) High resolution human evolutionary trees with polymorphic microsatellites. Nature 368:455–457

    Article  PubMed  CAS  Google Scholar 

  • Buntjer JB (1999) Cross Checker. Department of Plant Breeding, Wageningen University and Research Centre

  • Cavallini A, Natali L, Polizzi E, Giordani T (1996) Variation of repetitive DNA sequences in progenies of regenerated plants of Pisum sativum. J Heredity 87:233–237

    CAS  Google Scholar 

  • Cecchini E, Natali L, Cavallini A, Durante M (1992) DNA variations in regenerated plants of pea (Pisum sativum L). Theor Appl Genet 84:874–879

    Article  CAS  Google Scholar 

  • Chavanne F, Zhang DX, Liaud MF, Cerff R (1998) Structure and evolution of Cyclops: a novel giant retrotransposon of the Ty3/Gypsy family highly amplified in pea and other legume species. Plant Mol Biol 37:363–375

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    Article  PubMed  CAS  Google Scholar 

  • Ellis THN, Poyser SJ, Knox MR, Vershinin AV, Ambrose MJ (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet 260:9–19

    PubMed  CAS  Google Scholar 

  • Evans DA, Sharp WR, Medina-Filho HP (1984) Somaclonal and gametoclonal variation. Am J Bot 77:759–774

    Article  Google Scholar 

  • Ezhova TA, Bagrova AM, Gostimski SA (1995) Cell selection as a possible reason for the specificity of somaclonal variation in pea. Plant Breed 114:520–524

    Article  Google Scholar 

  • Ford R, Le Roux K, Itman C, Brouwer JB, Taylor PWJ (2002) Diversity analysis and genotyping in Pisum with sequence tagged microsatellite site (STMS) primers. Euphytica 124:397–405

    Article  CAS  Google Scholar 

  • Fraga M, Uriol E, Diego LB, Berdasco M, Esteller M, Cañal MJ, Rodriguez R (2002) High performance capillary electrophoretic method for the quantification of 5-methyl 2’-deoxycytidine in genomic DNA: application to plant, animal and human cancer tissues. Electrophoresis 23:1677–1681

    Article  PubMed  CAS  Google Scholar 

  • Freytag AH, Rao-Arelli AP, Anand SC, Wrather JA, Owens LD (1989) Somaclonal variation in soybean plants regenerated from tissue culture. Plant Cell Rep 8:199–202

    Article  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soyabean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Gesteira AS, Otoni WC, Barros EG, Moreira MA (2002) RAPD-based detection of genomic instability in soybean plants derived from somatic embryogenesis. Plant Breed 121:269–271

    Article  CAS  Google Scholar 

  • Gostimskii SA, Bagrova AM, Ezhova TA (1995) Discovery and cytogenetic analysis of the variability in plants regenerated from tissue-culture of pea (Pisum sativum L.) Dokl Akad Nauk SSSR 283:1007–1011

    Google Scholar 

  • Gostimsky SA, Kokaeva ZG, Konovalov FA (2005) Studying plant genome variation using molecular markers. Russ J Genet 41:378–388

    Article  CAS  Google Scholar 

  • Grandbastien MA (1998) Activation of plant retrotransposons under stress conditions. Trends Plant Sci 3:181–187

    Article  Google Scholar 

  • Griga M (2000a) Somaclonal variation in grain legumes. In: Ó Ríordain F (eds) COST Action 822: development of integrated systems for large-scale propagation of elite plants using in vitro techniques; report of activities 1998. Europ Comm, Brussels, pp 435–440

    Google Scholar 

  • Griga M (2000b) Morphological alterations in sterile mutant of Pisum sativum obtained via somatic embryogenesis . Biol Plant 43:161–165

    Article  Google Scholar 

  • Griga M, Novák FJ (1990) Pea (Pisum sativum L.) In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 10. Legumes and oil seed crops. Springer, Berlin, pp 65–99

  • Griga M, Stejskal J (1994) Micropropagation of pea (Pisum sativum L.)—in vitro system and its practical applications. In: Lumsden PJ, Nicholas JR, Davies WJ (eds) Physiology, growth and development of plants in culture. Kluwer, Dordrecht, pp 278–283

    Google Scholar 

  • Griga M, Tejklová E, Novák FJ (1984) Hormonal regulation of growth of pea (Pisum sativum L.) shoot apices in in vitro culture. Rost Výr 30:523–530 (In Czech)

    CAS  Google Scholar 

  • Griga M, Tejklová E, Novák FJ, Kubaláková M (1986) In vitro clonal propagation of Pisum sativum L. Plant Cell Tissue Organ Cult 6:95–104

    Article  CAS  Google Scholar 

  • Griga M, Stejskal J, Beber K (1995) Analysis of tissue culture derived variation in pea (Pisum sativum L.)—preliminary results. Euphytica 85:335–339

    Article  Google Scholar 

  • Griga M, Kosturkova G, Kuchuk N, Ilieva-Stoilova M (2001) Biotechnology. In: Hedley CL (ed) Carbohydrates in grain legume seeds. Improving nutritional quality and agronomic characteristics. CABI Publishing, Wallingford Oxon, pp 145–207

    Google Scholar 

  • Hirochika H (1993) Activation of tobacco retrotransposons during tissue culture. EMBO J 12:2521–2528

    PubMed  CAS  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788

    Article  PubMed  CAS  Google Scholar 

  • Jaligot E, Rival A, Beule T, Dussert S, Verdeil JL (2000) Somaclonal variation in oil palm (Elaeis guineensis Jacq.): the DNA methylation hypothesis. Plant Cell Rep 19:684–690

    Article  CAS  Google Scholar 

  • Jaligot E, Beule T, Baurens FC, Billote N, Rival A (2004) Search for methylation-sensitive amplification polymorphisms associated with the “mantled” variant phenotype in oil palm (Elaeis guineensis Jacq.). Genome 47:224–228

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Bao ZR, Zhang XY, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 42:163–167

    Article  CAS  Google Scholar 

  • Joyce SM, Cassells AC (2002) Variation in potato microplant morphology in vitro and DNA methylation. Plant Cell Tissue Organ Cult 70:125–137

    Article  CAS  Google Scholar 

  • Kaeppler SM, Phillips RL (1993) DNA methylation and tissue culture-induced variation in plants. In Vitro Cell Dev Biol Plant 29:125–130

    Article  Google Scholar 

  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    Article  PubMed  CAS  Google Scholar 

  • Karp A (1995) Somaclonal variation as a toll for crop improvement. Euphytica 85:295–302

    Article  Google Scholar 

  • Kazazian HH (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    Article  PubMed  CAS  Google Scholar 

  • Kidwell AG, Lisch D (1997) Transposable elements as source of variation in animals and plants. Proc Natl Acad Sci USA 94:7704–7711

    Article  PubMed  CAS  Google Scholar 

  • Klaas M, Amasino RM (1989) DNA methylation is reduced in Dnase l-sensitive regions of plant chromatin. Plant Physiol 91:451–454

    Article  PubMed  CAS  Google Scholar 

  • Knox MR, Ellis THN (2001) Stability and inheritance of methylation states at PstI sites in Pisum. Mol Gen Genome 265:497–507

    Article  CAS  Google Scholar 

  • Kohler C, Hennig L, Spillane C, Pien S, Gruissem W, Grossniklaus U (2003) The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev 17:1540–1553

    Article  PubMed  CAS  Google Scholar 

  • Komai F, Masuda K (2004) Plasticity in sex expression of spinach (Spinacia oleracea) regenerated from root tissues. Plant Cell Tissue Organ Cult 78:285–287

    Article  Google Scholar 

  • Kubis SE, Castilho AMF, Vershinin AV, Heslop-Harrison JS (2003) Retroelements, transposons and methylation status in the genome of oil palm (Elaeis guineensis) and the relationship to somaclonal variation. Plant Mol Biol 52:69–79

    Article  PubMed  CAS  Google Scholar 

  • Kumar PS, Mathur VL (2004) Chromosomal instability in callus culture of Pisum sativum. Plant Cell Tissue Organ Cult 78:267–271

    Article  Google Scholar 

  • Kuznetsova OI, Ash OA, Hartina GA, Gostimskij SA (2005) RAPD and ISSR analyses of regenerated pea Pisum sativum L. plants. Russ J Genet 41:60–65

    CAS  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:443–455

    Article  Google Scholar 

  • Liu ZL, Han FP, Tan M, Shan XH, Dong YZ, Wang XZ, Fedak G, Hao S, Bao Liu (2004) Activation of a rice endogenous retrotransposon Tos17 in tissue culture is accompanied by cytosine demethylation and causes heritable alteration in methylation pattern of flanking genomic regions. Theor Appl Genet 109:200–209

    Article  PubMed  CAS  Google Scholar 

  • Loridon K, McPhee K, Morin J, Dubreuil P, Pilet-Nayel ML, Aubert G, Rameau C, Baranger A, Coyne C, Lejeune-Henaut I, Burstin J (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111:1022–1031

    Article  PubMed  CAS  Google Scholar 

  • Martienssen RA, Colot V (2001) DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 293:1070–1074

    Article  PubMed  CAS  Google Scholar 

  • Matthes M, Singh R, Cheah SC, Karp A (2001) Variation in oil palm (Elaeis guineensis Jacq.) tissue culture-derived regenerants revealed by AFLPs with methylation-sensitive enzymes. Theor Appl Genet 102:971–979

    Article  CAS  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:472–497

    Article  Google Scholar 

  • Neumann P, Požárková D, Macas J (2003) Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced. Plant Mol Biol 53:399–410

    Article  PubMed  CAS  Google Scholar 

  • Peraza-Echeverria S, Herrera-Valencia VA, James-Kay A (2001) Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP). Plant Sci 161:359–367

    Article  PubMed  CAS  Google Scholar 

  • Phillips MH, Keppler SM, Olhoft P (1994) Genetic variability of plant tissue cultures: breakdown of normal control. Proc Natl Acad Sci USA 91:5222–5226

    Article  PubMed  CAS  Google Scholar 

  • Portis E, Acquadro A, Comino C, Lanteri S (2004) Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci 166:169–178

    Article  CAS  Google Scholar 

  • Rahman MH, Rajora OP (2001) Microsatellite DNA somaclonal variation in micropropagated trembling aspen (Populus tremuloides). Plant Cell Rep 20:531–536

    Article  CAS  Google Scholar 

  • Rival A, Bertrand L, Beule T, Combes MC, Trouslot P, Lashermes P (1998) Suitability of RAPD analysis for the detection of somaclonal variants in oil palm (Elaeis guineensis Jasq.). Plant Breed 117:73–76

    Article  Google Scholar 

  • Rohlf M (2000) NTSYS-pc: numerical taxonomy and multivariate analysis system. Version 2.1. Department of Eclogy and Evolution. State University of New York, USA

  • Saker MM, Adawy SS, Mohamed AA, El-Itriby HA (2006) Monitoring of cultivar identity in tissue culture-derived date palms using RAPD and AFLP analysis. Biol Plant 50:198–204

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Smýkal P (2006) Development of an efficient retrotransposon-based fingerprinting method for rapid pea variety identification. J Appl Genet 47:221–230

    PubMed  Google Scholar 

  • Smýkal P, Dostálová R, Hýbl M, Griga M (2004) Utility of high copy number “Ogre/Cyclop” retrotransposons for molecular genotyping of pea (Pisum sativum L.) germplasm. In: Vollmann J, Grausgruber H, Ruckenbauer P (eds) Genetic variation in plant breeding. BOKU-University of Natural Resources and Applied Life Sciences, Vienna, Austria, p 326

    Google Scholar 

  • Stejskal J, Griga M (1992) Somatic embryogenesis and plant regeneration in Pisum sativum L. Biol Plant 34:15–22

    Article  Google Scholar 

  • Tenhola-Roininen T, Immonen S, Tanhuanpaa P (2006) Rye doubled haploids as a research and breeding tool—a practical point of view. Plant Breed 125:584–590

    Article  Google Scholar 

  • Teo CH, Tan SH, Ho CL, Faridah QF, Othman YR, Heslop-Harrison JS, Kalendar R, Schulman AH (2005) Genome constitution and classification using retrotransposon-based markers in the orphan crop banana. J Plant Biol 48:96–105

    CAS  Google Scholar 

  • Vershinin AV, Allnutt TR, Knox MR, Ambrose MJ, Ellis NTH (2003) Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication. Mol Biol Evol 20:2067–2075

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP—a new technique for DNA-fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wessler SR (1996) Plant retrotransposons: turned on by stress. Curr Biol 6:959–961

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm E, Hristoforoglu K, Fluch S, Burg K (2005) Detection of microsatellite instability during somatic embryogenesis of oak (Quercus robur L.). Plant Cell Rep 23:790–795

    Article  PubMed  CAS  Google Scholar 

  • Xu ML, Li XQ, Korban SS (2004) DNA-methylation alterations and exchanges during in vitro cellular differentiation in rose (Rosa hybrida L.). Theor Appl Genet 109:899–910

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education of Czech Republic, projects OC 843.70, MSM 267842460 project and AGL-2004-00810 from Ministry of Education of Spain. Part of this work was performed during STSM-843-00977 granted to P.S. within the frame of COST-843 Action of European Union. Excellent technical support of Ms. L. Vítámvásová, E. Fialová and J. Vysloužilová is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Smýkal.

Additional information

Communicated by R. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smýkal, P., Valledor, L., Rodríguez, R. et al. Assessment of genetic and epigenetic stability in long-term in vitro shoot culture of pea (Pisum sativum L.). Plant Cell Rep 26, 1985–1998 (2007). https://doi.org/10.1007/s00299-007-0413-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0413-9

Keywords

Navigation