Skip to main content
Log in

Transgenic American elm shows reduced Dutch elm disease symptoms and normal mycorrhizal colonization

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The American elm (Ulmus americana L.) was once one of the most common urban trees in eastern North America until Dutch-elm disease (DED), caused by the fungus Ophiostoma novo-ulmi, eliminated most of the mature trees. To enhance DED resistance, Agrobacterium was used to transform American elm with a transgene encoding the synthetic antimicrobial peptide ESF39A, driven by a vascular promoter from American chestnut. Four unique, single-copy transgenic lines were produced and regenerated into whole plants. These lines showed less wilting and significantly less sapwood staining than non-transformed controls after O. novo-ulmi inoculation. Preliminary observations indicated that mycorrhizal colonization was not significantly different between transgenic and wild-type trees. Although the trees tested were too young to ensure stable resistance was achieved, these results indicate that transgenes encoding antimicrobial peptides reduce DED symptoms and therefore hold promise for enhancing pathogen resistance in American elm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DED:

Dutch-elm disease

GUS:

Beta-glucuronidase

SSC:

Saline sodium citrate

SDS:

Sodium dodecyl sulfate (also known as sodium lauryl sulfate)

PDB:

Potato dextrose broth

PDA:

Potato dextrose agar

MIC:

Minimum inhibitory concentration

AMP:

Anti-microbial peptide

References

  • Alan AR, Blowers A, Earle ED (2004) Expression of a magainin-type antimicrobial peptide gene (MSI-99) in tomato enhances resistance to bacterial speck disease. Plant Cell Rep 22:388–396

    Article  PubMed  CAS  Google Scholar 

  • Anderson PL, Holliday NJ (2003) Distribution and survival of overwintering adults of the Dutch elm disease vector, Hylurgopinus rufipes (Coleoptera: Scolytidae), in American elm trees in Manitoba. Agric Forest Entomol 5:137–144

    Article  Google Scholar 

  • Ben Jouira H, Hassairi A, Bigot C, Dorion N (1998) Adventitious shoot production from strips of stem in the Dutch elm hybrid ‘Commelin’: plantlet regeneration and neomycin sensitivity. Plant Cell Tissue Organ Cul 53:153–160

    Article  Google Scholar 

  • Bey CF (1990) Ulmus americana L. American Elm (Ulmaceae - elm family). In: Burns RM, Honkala BH (eds) Silvics of North America: 2 hardwoods agriculture handbook 654. USDA Forest Service, Washington DC, p 877

    Google Scholar 

  • Bi Y-M, Cammue B, Goodwin P, KrishnaRaj S, Saxena P (1999) Resistance to Botrytis cinerea in scented geranium transformed with a gene encoding the antimicrobial protein Ace-AMP1. Plant Cell Rep 18:835–840

    Article  CAS  Google Scholar 

  • Bolyard MG, Srinivasan C, Cheng J, Sticklen MB (1991a) Shoot regeneration from leaf explants of American and Chinese elm. HortScience 26:1554–1555

    Google Scholar 

  • Bolyard MG, Hajela RK, Sticklen MB (1991b) Microprojectile and Agrobacterium-mediated transformation of pioneer elm. J Arboriculture 17:34–37

    Google Scholar 

  • Brasier C (1991) Ophiostoma novo-ulmi sp. nov., causative agent of current Dutch elm disease pandemics. Mycopathologia 115:151–161

    Article  Google Scholar 

  • Brundrett M, Murase G, Kendrick B (1990) Comparative anatomy of roots and mycorrhizae of common Ontario trees. Can J Bot 68:551–578

    Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with Mycorrhizas in forestry and agriculture (ACIAR Monograph 32). Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Catranis CM (1999) Transgenic hybrid poplar expressing genes encoding antimicrobial peptides. In: EFB. SUNY-ESF, Syracuse, NY

  • Chalupa V (1975) Induction of organogenesis in forest tree tissue cultures. Commun Instituti Forestalis Cechosloveniae 9:39–50

    Google Scholar 

  • Charity J, Holland L, Grace L, Walter C (2005) Consistent and stable expression of the nptII, uidA, and bar genes in transgenic Pinus radiata after Agrobacterium tumefaciens-mediated transformation using nurse cultures. Plant Cell Rep 23:606–616

    Article  PubMed  CAS  Google Scholar 

  • Clarke H, Davis J, Wilbert S, Bradshaw H, Gordon MP (1994) Wound-induced and developmental activation of a poplar tree chitinase gene promoter in transgenic tobacco. Plant Mol Biol 25:799–815

    Article  PubMed  CAS  Google Scholar 

  • Connors BJ, Miller M, Maynard CA, Powell WA (2002) Cloning and characterization of promoters from American Chestnut capable of directing reporter gene expression in transgenic Arabidopsis plants. Plant Sci 163:771–781

    Article  CAS  Google Scholar 

  • De Bolle M, Osborn R, Goderis I, Noe L, Acland D, Hart C, Torrekens S, Van Leuven F, Broekaert W (1996) Antimicrobial peptides from Mirabilis jalapa and Amaranthus caudatus: expression, processing, localization and biological activity in transgenic tobacco. Plant Mol Biol 31:993–1008

    Article  PubMed  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  PubMed  CAS  Google Scholar 

  • Durzan DJ, Lopushanski SM (1975) Propagation of American elm via cell suspension cultures. Can J Forest Res 5:273–277

    Article  Google Scholar 

  • Elgersma DM (1973) Tylose formation in elms after inoculation with Ceratocystis ulmi, a possible resistance mechanism. [Ulmus]. Neth J Plant Pathol 79:218–220

    Article  Google Scholar 

  • Escobar MA, Leslie CA, McGranahan GH, Dandekar AM (2002) Silencing crown gall disease in walnut (Juglans regia L.). Plant Sci 163:591–597

    Article  CAS  Google Scholar 

  • Fenning TM, Gartland KMA, Brasier CM (1993) Micropropagation and regeneration of English elm, Ulmus procera Salisbury. J Exp Bot 44:1211–1217

    Article  Google Scholar 

  • Fenning TM, Tymens SS, Gartland JS, Brasier CM, Gartland KMA (1996) Transformation and regeneration of English elm using wild-type Agrobacterium tumefaciens. Plant Sci 116:37–46

    Article  CAS  Google Scholar 

  • Gartland JS, McHugh AT, Brasier CM, Irvine RJ, Fenning TM, Gartland KMA (2000) Regeneration of phenotypically normal English elm (Ulmus procera) plantlets following transformation with an Agrobacterium tumefaciens binary vector. Tree Physiol 20:901–907

    PubMed  CAS  Google Scholar 

  • Gartland JS, Brasier CM, Fenning TM, Birch R, Gartland KMA (2001) Ri-plasmid mediated transformation and regeneration of Ulmus procera (English Elm). Plant Growth Reg 33:123–129

    Article  CAS  Google Scholar 

  • Gartland KMA, McHugh A, Crow R, Garg A, Gartland J (2005) 2004 SIVB congress symposium proceeding: Biotechnological progress in dealing with Dutch elm disease. In Vitro Cellular Dev Biol Plant 41:364–367

    Article  Google Scholar 

  • George MW, Tripepi RR (1994) Cytokinins, donor plants and time in culture affect shoot regenerative capacity of American elm leaves. Plant Cell Tissue Organ Cul 39:27–36

    Article  CAS  Google Scholar 

  • Giri C, Shyamkumar B, Anjaneyulu C (2004) Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview. Trees 18:115–135

    Google Scholar 

  • Harrison S, Marcus J, Goulter K, Green J, Maclean D, Manners J (1997) An antimicrobial peptide from the Australian native Hardenbergia violacea provides the first functionally characterised member of a subfamily of plant defensins. Aust J Plant Physiol 24:571–578

    Article  CAS  Google Scholar 

  • Haugen L, Stennes M (1999) Fungicide injection to control Dutch elm disease: Understanding the options. PDQ 20:29–38

    Google Scholar 

  • Heybroek HM, Elgersma DM, Scheffer RJ (1982) Dutch elm disease: an ecological accident. Outlook Agric 11:1–9

    Google Scholar 

  • Holmes FW, Heybrook, HM, translators (1990) Dutch elm disease- the early papers: selected works of seven Dutch women phyotpathologists. APS Press, St. Paul, MN

  • Hubbes M (1999) The American elm and Dutch elm disease. Forestry Chron 75:265–273

    Google Scholar 

  • Jacobi V, Plourde A, Charest PJ, Hamilton RC (2000) In vitro toxicity of natural and designed peptides to tree pathogens and pollen. Can J Bot 78:455–461

    Article  CAS  Google Scholar 

  • Kaldorf M, Fladung M, Muhs HJ, Buscot F (2002) Mycorrhizal colonization of transgenic aspen in a field trial. Planta 214:653–660

    Article  PubMed  CAS  Google Scholar 

  • Kapaun JA, Cheng ZM (1997) Plant regeneration from leaf tissues of Siberian elm. HortScience 32:301–303

    CAS  Google Scholar 

  • Karnosky DF (1979) Dutch elm disease: A review of the history, environmental implications, control, and research needs. Environ Conserv 6:311–322

    Article  Google Scholar 

  • Karnosky DF, Mickler A (1986) Forest and nut trees. 6. Elms (Ulmus spp.). In: Bajaj YPS (eds) Biotechnology in agriculture and forestry. Springer, Berlin, pp 326–340

    Google Scholar 

  • Li L, Zhou Y, Cheng X, Sun J, Marita J, Ralph J, Chiang V (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. PNAS 100:4939–4944

    Article  PubMed  CAS  Google Scholar 

  • Liang H, Maynard CA, Allen RD, Powell WA (2001) Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Mol Biol 45:619–629

    Article  PubMed  CAS  Google Scholar 

  • Liang H, Catranis CM, Maynard CA, Powell WA (2002) Enhanced Resistance to the Poplar Fungal Pathogen, Septoria musiva, in Hybrid Poplar Clones Transformed with Genes Encoding Antimicrobial Peptides. Biotechnol Lett 24:383–389

    Article  CAS  Google Scholar 

  • Line L (1997) The return of an American classic. Audubon 99:70–74

    Google Scholar 

  • Lingua G, D’Agnostino G, Massa N, Antosiano M, Berta G (2002) Mycorrhiza-induced differential response to a yellows disease in tomato. Mycorrhiza 12:191–198

    Article  PubMed  Google Scholar 

  • Lodhi M, Ye G, Weeden N, Reisch B (1994) A simple and efficient method for DNA extraction from grapevine cultivars, Vitis species and Ampelopsis. Plant Mol Biol Rep 12:6–13

    Article  CAS  Google Scholar 

  • McGonigle T, Miller M, Evans D, Fairchild G, Swan J (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Mezzetti B, Minotta G, Navocchi O, Rosati P (1988) In vitro propagation of Ulmus carpinifolia. Acta Horticulturae (ISHS) 227:396–398

    Google Scholar 

  • Mills D, Hammerschlag F (1993) Effect of cecropin B on peach pathogens, protoplasts, and cells. Plant Sci 93:143–150

    Article  CAS  Google Scholar 

  • Moore G (2003) Timeline of plant tissue culture and selected molecular biology events. In: University of Florida Institute for Food and Agricultural Sciences

  • Mushin TM, Zwiazek JJ (2002) Ectomycorrhizas increase apaplastic water transport and root hydraulic conductivity in Ulmus americana seedlings. New Phytol 153:153–158

    Article  Google Scholar 

  • Newhouse AE (2005) Transformation of American Elm with a Gene Encoding a Synthetic Antimicrobial Peptide for Resistance to Dutch-Elm Disease. In: EFB. SUNY College of Environmental Science and Forestry, Syracuse, NY

  • Newhouse AE, Scrodt F, Liang H, Maynard C, Powell W (2006) American elm (Ulmus americana). In: Wang K (ed) Agrobacterium Protocols. 2nd edn. Humana Press, Totowa, pp 99–112

    Google Scholar 

  • Norelli JL, Mills JZ, Momol MT, Aldwinkle HS (1998) Effect of cecropin-like transgenes on fire blight resistance of apple. Acta Horticulturae 489:273–278

    Google Scholar 

  • Pappinen A, Degefu Y, Syrjala L, Keinonen K, Weissenberg Kv (2002) Transgenic silver birch (Betula pendula) expressing sugarbeet chitinase 4 shows enhanced resistance to Pyrenopeziza betulicola. Plant Cell Rep 20:1046–1051

    Article  CAS  Google Scholar 

  • Peach C, Velten J (1991) Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol 17:49–60

    Article  PubMed  CAS  Google Scholar 

  • Polin LD, Liang H, Rothrock R, Nishii M, Diehl D, Newhouse AE, Nairn J, Powell WA, Maynard C (2006) Agrobacterium-mediated transformation of American chestnut (Castanea dentata (Marsh.) Borkh.) somatic embryos. Plant Cell Tissue Organ Cult 84:69–78

    Article  CAS  Google Scholar 

  • Powell WA, Catranis CM, Maynard CA (1995) Synthetic antimicrobial peptide design. Mol Plant Microbe Interact 8:792–794

    PubMed  CAS  Google Scholar 

  • Powell WA, Catranis CM, Maynard CA (2000) Design of self-processing antimicrobial peptides for plant protection. Lett Appl Microbiol 31:163–168

    Article  PubMed  CAS  Google Scholar 

  • Powell WA, Maynard CA, Boyle B, Seguin A (2005) Fungal and bacterial resistance in transgenic trees. In: Flaunding M, Ditrich E (eds) Transgenic trees. Springer, Heidelberg

    Google Scholar 

  • Reynoird J, Mourgues F, Norelli J, Aldwinckle H, Brisset M, Chevreau E (1999) First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene from Hyalophora cecropia. Plant Sci 149:23–31

    Article  CAS  Google Scholar 

  • Rioux D, Chamberland H, Simard M, Ouellette GB (1995) Suberized tyloses in trees: an ultrastructural and cytochemical study. Planta 196:125–140

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. 3rd edn. Cold Springs Harbor Laboratory, Cold Springs Harbor

    Google Scholar 

  • Sangtong V, Moran D, Chikwamba R, Wang K, Woodman-Clikeman W, Long M, Lee M, Scott M (2002) Expression and inheritance of the wheat Glu-1DX5 gene in transgenic maize. Theor Appl Genetics 105:937–945

    Article  CAS  Google Scholar 

  • Santini A, Fagnani A, Ferrini F, Ghelardini L, Mittempergher L (2005) Variation among Italian and French elm clones in their response to Ophiostoma novo-ulmi inoculation. Forest Pathol 35:183–193

    Article  Google Scholar 

  • Scala A, Patteuelli M, Coppola L, Guastini M, Tegli S, Sorbo GD, Mittempergher L, Scala F (1997) Dutch elm disease progression and quantitative determination of cerato-ulmin in leaves, stems and branches of elms inoculated with Ophiostoma novo-ulmi and O. ulmi. Physiol Mol Plant Pathol 50:349–360

    Article  CAS  Google Scholar 

  • Sherald JL, Santamour RJ, Hajela RK, Hajela N, Sticklen MB (1994) A Dutch elm disease resistant triploid elm. Can J Forest Res 24:647–653

    Google Scholar 

  • Shin SY, Yang S-T, Park EJ, Eom SH, Song WK, Kim Y, Hahm K-S, Kim JI (2002) Salt resistance and synergistic effect with vancomycin of [alpha]-helical antimicrobial peptide P18. Biochem Biophys Res Commun 290:558

    Article  PubMed  CAS  Google Scholar 

  • Sinclair WA (2000) Elm Yellows in North America. In: Dunn C (ed) The elms: breeding, conservation, and disease management. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Sinclair WA (2001) Elm yellows phytoplasma lethal to Dutch elm disease-resistant Ulmus americana cultivars. Plant Dis 85:560

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San Diego

    Google Scholar 

  • Smucker SJ (1944) Rebuilding the American elm. American Forests 50,104–107,137–138

    Google Scholar 

  • Solla A, Gil L (2003) Evaluating Verticillium dahliae for biological control of Ophiotsoma novo-ulmi in Ulmus minor. Plant Pathol 52:579–585

    Article  Google Scholar 

  • Sticklen MB, Bolyard MG, Hajela RK, Duchesne LC (1991) Molecular and cellular aspects of Dutch elm disease. Phytoprotection 72:1–1

    CAS  Google Scholar 

  • Sticklen MB, Hajela RK, Bolyard MG, Graham LS, Sherald JL (1994) Genetic transformation in Ulmus species (Elms). Biotechnol Agric Forestry 29:401–410

    Google Scholar 

  • Terras FRG, Torrekens S, Van Leuven F, Osborn R, Vanderleyden J, Cammue B, Broekaert W (1993) A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species. FEBS Lett 316:233–240

    Article  PubMed  CAS  Google Scholar 

  • Tournier V, Grat S, Marque C, Kayal WE, Penchel R, Andrade Gd, Boudet AM, Teulieres C (2003) An efficient procedure to stably introduce genes into an economically important pulp tree (Eucalyptus grandis x Eucalyptus urophylla). Transgenic Res 12:403–411

    Article  PubMed  CAS  Google Scholar 

  • Townsend AM, Douglass LW (2001) Variation among American elm clones in Long-term dieback, growth, and survival following Ophiostoma inoculation. J Environ Horticulture 19:100–103

    Google Scholar 

  • Townsend AM, Douglass LW (2004) Evaluation of elm clones for tolerance to Dutch elm disease. J Arboriculture 30:179–183

    Google Scholar 

  • Townsend, A.M., Bentz, S.E., Johnson, G.R. (1995) Variation in response of selected American elm clones to Ophiostoma ulmi. J Environ Horticulture

  • Turrini A, Sbrana C, Pitto L, Castiglione MR, Giorgetti L, Briganti R, Bracci T, Evangelista M, Nuti MP, Giovannetti M (2004) The antifungal Dm-AMP1 protein from Dahlia merckii expressed in Solanum melongena is released in root exudates and differentially affects pathogenic fungi and mycorrhizal symbiosis. New Phytol 163:393–403

    Article  CAS  Google Scholar 

  • Vierheilig H, Alt M, Neuhaus JM, Boller T, Wiemken A (1993) Colonization of transgenic Nicotiana sylvestris plants, expressing different forms of the Nicotiana tabacum chitinase, by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glomus mosseae. Mol Plant Microbe Interact 6:261–264

    CAS  Google Scholar 

  • Vierheilig H, Alt M, Lange J, Gutrella M, Wiemken A, Boller T (1995) Colonization of transgenic tobacco constitutively expressing pathogenisis-related proteins by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 61:3031–3034

    PubMed  CAS  Google Scholar 

  • Wilkins TA, Smart LB (1996) Isolation of RNA from plant tissue. In: Kreig PA (ed) A laboratory guide to RNA: isolation, analysis, and synthesis. Wiley, New York

    Google Scholar 

  • Yeaman M, Gank K, Bayer A, Brass E (2002) Synthetic peptides that exert antimicrobial activities in whole blood and blood-derived matrices. Antimicrob Agents Chemother 46:3883–3891

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Sederoff R, Allona I (2000) Differential expression of genes encoding cell wall proteins in vascular tissues from vertical and bent loblolly pine trees. Tree Physiol 20:457–466

    PubMed  Google Scholar 

  • Zhao Y, Liu Q, Davis RE (2004) Transgene expression in strawberries driven by a heterologous phloem-specific promoter. Plant Cell Rep 23:224–230

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

ArborGen, LLC provided funding for this research. Thanks to Drs. Tom Horton and Larry Smart for shared expertise and use of lab equipment. Thanks and best of luck to Nick Kaczmar for carrying on this research. Many thanks to Megan Newhouse for valuable advice, support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Powell.

Additional information

Communicated by L. Jouanin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newhouse, A.E., Schrodt, F., Liang, H. et al. Transgenic American elm shows reduced Dutch elm disease symptoms and normal mycorrhizal colonization. Plant Cell Rep 26, 977–987 (2007). https://doi.org/10.1007/s00299-007-0313-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0313-z

Keywords

Navigation