Skip to main content
Log in

Characterization of the 16S–23S internal transcribed spacer among 34 higher plants: suitability for interspecific plastid transformation

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Biomanufacturing by chloroplast transgene expression has the potential to produce significant amounts of biopharmaceuticals, endow plants with novel commercial or humanitarian capabilities, enhance phytoremediation methods and harden plants against adverse environments. Plastid bioengineering exploits the phenomenon of homologous recombination to specifically integrate heterologous sequences into the plastid genome. Previous research suggests the plastid genome 16S–23S internal transcribed spacer provides an advantageous integration site for transgene expression. To characterize the suitability of the 16S–23S region for interspecific recombination, we developed primers against conserved plastid sequences and amplified ∼2.6 kb from 25 plant species. We analyzed the amplicons with nine species from Genbank for homeology, phylogenetic relationships, potential to form chimeric rDNA elements disruptive to translational/replication systems, and the potential number of recombination events for various minimal essential processing segments (MEPS) lengths. Multiple sequence alignment of the 34 species revealed considerable conservation, with identities exceeding 95% among the angiosperms. Substitutions were statistically clustered, generally in noncoding sites, although proposed functional elements such as the OriA region and 3′ terminus of the 16S rRNA exhibited unexpected variation. The nonrandom distribution of substitutions undermines the established, statistical method of estimating the number of recombination initiation sites. This finding is further substantiated by comparing statistical estimates of the number of MEPS sites to a direct count at three different MEPS lengths. We frame this in silico analysis in terms of the potential of the 16S–23S region as a target for interspecific transformation, and describe a ‘primer-to-plastid’ system to rapidly generate species-specific flanking regions for transformation vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6:

Similar content being viewed by others

References

  • APGII (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436

    Google Scholar 

  • Birky CW Jr, Walsh JB (1992) Biased gene conversion, copy number, and apparent mutation rate differences within chloroplast and bacterial genomes. Genetics 130:677–683

    PubMed  Google Scholar 

  • Cate JH, Yusupov MM, Yusupova GZ, Earnest TN, Noller HF (1999) X-ray crystal structures of 70S ribosome functional complexes. Science 285:2095–2104

    Article  CAS  PubMed  Google Scholar 

  • Cerutti H, Johnson AM, Boynton JE, Gillham NW (1995) Inhibition of chloroplast DNA recombination and repair by dominant negative mutants of Escherichia coli RecA.Mol Cell Biol 15:3003–3011

    CAS  PubMed  Google Scholar 

  • Cox MM (1998) A broadening view of recombinational DNA repair in bacteria. Genes Cells 3:65–78

    Article  CAS  PubMed  Google Scholar 

  • Curtis SE, Clegg MT (1984) Molecular evolution of chloroplast DNA sequences. Mol Biol Evol 1:291–301

    CAS  PubMed  Google Scholar 

  • Daniell H, Guda C, McPherson DT, Zhang X, Xu J, Urry DW (1997) Hyperexpression of a synthetic protein-based polymer gene. Methods Mol Biol 63:359–371

    CAS  PubMed  Google Scholar 

  • Decker EL, Reski R (2004) The moss bioreactor. Curr Opin Plant Biol 7:166–170

    Article  CAS  PubMed  Google Scholar 

  • del Solar G, Giraldo R, Ruiz-Echevarria MJ, Espinosa M, Diaz-Orejas R (1998) Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 62:434–464

    CAS  PubMed  Google Scholar 

  • Firpo MA, Dahlberg AE (1998) The importance of base pairing in the penultimate stem of Escherichia coli 16S rRNA for ribosomal subunit association. Nucleic Acids Res 26:2156–2160

    Article  CAS  PubMed  Google Scholar 

  • Hirose T, Sugiura M (2004) Functional Shine-Dalgarno-like sequences for translational initiation of chloroplast mRNAs. Plant Cell Physiol 45:114–117

    Article  CAS  PubMed  Google Scholar 

  • Hornung S, Fulgosi H, Dorfel P, Herrmann RG (1996) Sequence variation in the putative replication origins of the five genetically distinct basic Euoenothera plastid chromosomes (plastomes).Mol Gen Genet 251:609–612

    CAS  PubMed  Google Scholar 

  • Horvath EM, Peter SO, Joet T, Rumeau D, Cournac L, Horvath GV, Kavanagh TA, Schafer C, Peltier G, Medgyesy P (2000) Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiol 123:1337–1350

    Article  CAS  PubMed  Google Scholar 

  • Kavanagh TA, Thanh ND, Lao NT, McGrath N, Peter SO, Horvath EM, Dix PJ, Medgyesy P (1999) Homeologous plastid DNA transformation in tobacco is mediated by multiple recombination events. Genetics 152:1111–1122

    CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Koch W, Edwards K, Kossel H (1981) Sequencing of the 16S–23S spacer in a ribosomal RNA operon of Zea mays chloroplast DNA reveals two split tRNA genes. Cell 25:203–213

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854

    Article  CAS  PubMed  Google Scholar 

  • Kunnimalaiyaan M, Nielsen BL (1997) Fine mapping of replication origins (ori A and ori B) in Nicotiana tabacum chloroplast DNA. Nucleic Acids Res 25:3681–3686

    Article  CAS  PubMed  Google Scholar 

  • Lehmann K, Schmidt U (2003) Group II introns: structure and catalytic versatility of large natural ribozymes. Crit Rev Biochem Mol Biol 38:249–303

    CAS  PubMed  Google Scholar 

  • Lockton S, Gaut BS (2005) Plant conserved non-coding sequences and paralogue evolution. Trends Genet 21:60–65

    Article  CAS  PubMed  Google Scholar 

  • Lugo SK, Kunnimalaiyaan M, Singh NK, Nielsen BL (2004) Required sequence elements for chloroplast DNA replication activity in vitro and in electroporated chloroplasts. Plant Sci 166:151–161

    Article  CAS  Google Scholar 

  • Majewski J, Cohan FM (1998) The effect of mismatch repair and heteroduplex formation on sexual isolation in Bacillus. Genetics 148:13–18

    CAS  PubMed  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  CAS  PubMed  Google Scholar 

  • Misra VK, Draper DE (1998) On the role of magnesium ions in RNA stability. Biopolymers 48:113–135

    Article  CAS  PubMed  Google Scholar 

  • Modrich P, Lahue R (1996) Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem 65:101–133

    Article  CAS  PubMed  Google Scholar 

  • Muhlbauer SK, Lossl A, Tzekova L, Zou Z, Koop HU (2002) Functional analysis of plastid DNA replication origins in tobacco by targeted inactivation. Plant J 32:175–184

    Article  PubMed  Google Scholar 

  • Newman SM, Boynton JE, Gillham NW, Randolph-Anderson BL, Johnson AM, Harris EH (1990) Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: molecular and genetic characterization of integration events. Genetics 126:875–888

    CAS  PubMed  Google Scholar 

  • Nobles KN, Yarian CS, Liu G, Guenther RH, Agris PF (2002) Highly conserved modified nucleosides influence Mg2±-dependent tRNA folding. Nucleic Acids Res 30:4751–4760

    Article  CAS  PubMed  Google Scholar 

  • Ogle JM, Brodersen DE, Clemons WM Jr, Tarry MJ, Carter AP, Ramakrishnan V (2001) Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292:897–902

    Article  CAS  PubMed  Google Scholar 

  • Oommen A, Li XQ, Gegenheimer P (1992) Cleavage specificity of chloroplast and nuclear tRNA 3'-processing nucleases.Mol Cell Biol 12:865–875

    CAS  PubMed  Google Scholar 

  • Qiu YL, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402:404–407

    Article  CAS  PubMed  Google Scholar 

  • Raue HA, Klootwijk J, Musters W (1988) Evolutionary conservation of structure and function of high molecular weight ribosomal RNA. Prog Biophys Mol Biol 51:77–129

    Article  CAS  PubMed  Google Scholar 

  • Savolainen V, Chase MW, Hoot SB, Morton CM, Soltis DE, Bayer C, Fay MF, de Bruijn AY, Sullivan S, Qiu YL (2000) Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Syst Biol 49:306–362

    Article  CAS  PubMed  Google Scholar 

  • Schmitz-Linneweber C, Regel R, Du TG, Hupfer H, Herrmann RG, Maier RM (2002) The plastid chromosome of Atropa belladonna and its comparison with that of Nicotiana tabacum: the role of RNA editing in generating divergence in the process of plant speciation. Mol Biol Evol 19:1602–1612

    CAS  PubMed  Google Scholar 

  • Shen P, Huang HV (1986) Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112:441–457

    CAS  PubMed  Google Scholar 

  • Sugiura C, Sugita M (2004) Plastid transformation reveals that moss tRNA(Arg)-CCG is not essential for plastid function. Plant J 40:314–321

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  Google Scholar 

  • Tracy RB, Kowalczykowski SC (1996) In vitro selection of preferred DNA pairing sequences by the Escherichia coli RecA protein. Genes Dev 10:1890–1903

    CAS  PubMed  Google Scholar 

  • USDA, NRCS (2006) The plants database (http://plants.usda.gov, 31 July 2006). National plant data center, Baton Rouge, LA 70874–4490, USA

  • Vogel J, Borner T (2002) Lariat formation and a hydrolytic pathway in plant chloroplast group II intron splicing. EMBO J 21:3794–3803

    Article  CAS  PubMed  Google Scholar 

  • Vogel J, Hess WR (2001) Complete 5′ and 3′ end maturation of group II intron-containing tRNA precursors. RNA 7:285–292

    Article  CAS  PubMed  Google Scholar 

  • von Ahsen U, Noller HF (1995) Identification of bases in 16S rRNA essential for tRNA binding at the 30S ribosomal P site. Science 267:234–237

    Article  CAS  PubMed  Google Scholar 

  • Vulic M, Dionisio F, Taddei F, Radman M (1997) Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc Natl Acad Sci USA 94:9763–9767

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Saitoh Y, Sato T, Hidaka S, Tsutsumi K (2003) Comparison of plastid DNA replication in different cells and tissues of the rice plant. Plant Mol Biol 52:905–913

    Article  CAS  PubMed  Google Scholar 

  • Watson J, Koya V, Leppla SH, Daniell H (2004) Expression of Bacillus anthracis protective antigen in transgenic chloroplasts of tobacco, a non-food/feed crop. Vaccine 22:4374–4384

    Article  CAS  PubMed  Google Scholar 

  • Westmoreland J, Porter G, Radman M, Resnick MA (1997) Highly mismatched molecules resembling recombination intermediates efficiently transform mismatch repair proficient Escherichia coli. Genetics 145:29–38

    CAS  PubMed  Google Scholar 

  • Williamson SE, Doolittle WF (1983) Genes for tRNAIle and tRNAAla in the spacer between the 16S and 23S rRNA genes of a blue-green alga: strong homology to chloroplast tRNA genes and tRNA genes of the E. coli rrnD gene cluster. Nucleic Acids Res 11:225–235

    CAS  PubMed  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Article  CAS  PubMed  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick M. McNutt.

Additional information

Communicated by R. Reski

Rights and permissions

Reprints and permissions

About this article

Cite this article

McNutt, P.M., Dehart, M. & Matej, L.A. Characterization of the 16S–23S internal transcribed spacer among 34 higher plants: suitability for interspecific plastid transformation. Plant Cell Rep 26, 47–60 (2007). https://doi.org/10.1007/s00299-006-0203-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0203-9

Keywords

Navigation