Skip to main content

Advertisement

Log in

High-efficiency Agrobacterium rhizogenes-mediated transformation of heat inducible sHSP18.2-GUS in Nicotiana tabacum

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The chimerical gene, Arabidopsis thaliana sHSP18.2 promoter fused to E. coli gusA gene, was Agrobacterium rhizogenes-mediated transformed into Nicotiana tabacum as a heat-regulatable model, and the thermo-inducible expression of GUS activity in N. tabacum transgenic hairy roots was profiled. An activation of A. rhizogenes with acetosyringone (AS) before cocultured with tobacco's leaf disc strongly promoted transgenic hairy roots formation. Transgenic hairy roots formation efficiency of A. rhizogenes precultured with 200 μM AS supplementation was 3.1-fold and 7.5-fold, respectively, compared to the formation efficiency obtained with and without AS supplementation in coculture. Transgenic hairy roots transformed with different AS concentration exhibited a similar pattern of thermo-inducibility after 10 min to 3 h heat treatments detected by GUS expression. The peak of expressed GUS specific activity, 399,530 pmol MUG per mg total protein per min, of the transgenic hairy roots was observed at 48 h after 3 h of 42°C heat treatment, and the expressed GUS specific activity was 7–26 times more than that reported in A. thaliana, tobacco BY-2 cells and Nicotiana plumbaginifolia. Interference caused by AS supplementation on the growth of transgenic hairy roots, time-course of GUS expression and its expression level were not observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baron C, Domke N, Beinhofer M, Hapfelmeier S (2001) Elevated temperature differentially affects virulence, VirB protein accumulation, and T-Pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains. J Bacteriol 183:6852–6861

    Article  CAS  PubMed  Google Scholar 

  • Boase MR, Bradley JM, Borst NK (1998) An improved method for transformation of regal pelargonium (Pelargonium Xdomesticum Dubonnet) by Agrobacterium tumefaciens. Plant Sci 139:59–69

    Article  CAS  Google Scholar 

  • Borsics T, Mihálka V, Oreifig AS, Bárány I, Lados M, Nagy I, Jenes B, Toldi O (2002) Methods for genetic transformation of the parasitic weed dodder (Cuscuta trifolii Bab. et Gibs) and for PCR-based detection of early transformation events. Plant Sci 162:193–199

    Article  CAS  Google Scholar 

  • Cui M, Ezura H (2003) Agrobacterium-mediated transformation of Nemesia strumosa Benth, a model plant for asymmetric floral development. Plant Sci 165:863–870

    Article  CAS  Google Scholar 

  • Doran PM (2000) Foreign protein production in plant tissue cultures. Curr Opin Biotechnol 11:199–204

    Article  CAS  PubMed  Google Scholar 

  • Engstorm P, Zambryski P, Montagu MV, Stachel S (1987) Characterization of Agrobacterium tumefaciens virulence proteins induced by the plant factor acetosyringone. J Mol Biol 197:635–645

    Article  Google Scholar 

  • Fischer R, Liao Y, Drossard J (1999) Affinity-purification of a TMV-specific recombinant full-size antibody from a transgenic tobacco suspension culture. J Immunol Method 226:1–10

    Article  CAS  Google Scholar 

  • Gelvin SB, Liu CN (1994) Genetic manipulation of Agrobacterium tumefaciens strains to improve transformation of recalcitrant plant species. In: Gelvin SB, Schilperoort RA (eds) Plant Molecular biology manual. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. B4/1–B4/13

    Google Scholar 

  • Giri A, Narasu ML (2000) Agrobacterium rhizogenes-mediated transformation of Sesbania rostrata. Biotechnol Adv 18:1–22

    Article  CAS  PubMed  Google Scholar 

  • Godwin I, Todd G, Ford-Lloyd B, Newbury HJ (1991) The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Rep 9:671–675

    Article  CAS  Google Scholar 

  • Guivare’h A, Caissard JC, Brown S, Marie D, Dewitte W, Van Onekelen H, Chriqui D (1993) Localization of target cells and improvement of Agrobacterium-mediated transformation efficiency by direct acetosyringone pretreatment of carrot root discs. Protoplasma 174:10–18

    Article  Google Scholar 

  • Holford P, Hernandez N, Newbury HJ (1992) Factors influencing the efficiency of T-DNA transfer during co-cultivation of Antirrhinum majus with Agrobacterium tumefaciens. Plant Cell Rep 11:196–199

    CAS  Google Scholar 

  • Hong S, Kwon T, Lee J, Jang Y, Yang M (2002) Production of biologically active hG-CSF by transgenic plant cell suspension culture. Enzyme Microb Technol 30:763–767

    Article  CAS  Google Scholar 

  • James DJ, Uratsu S, Cheng JS, Negri P, Viss P, Dandekar AM (1993) Acetosyringone and osmoprotectants like betaine or proline synergistically enhance Agrobacterium-mediated transformation of apple. Plant Cell Rep 12:559–563

    Article  CAS  Google Scholar 

  • James E, Mills DR, Lee JM (2002) Increased production and recovery of secreted foreign proteins from plant cell cultures using an affinity chromatography bioreactor. Biochem Eng J 12:205–213

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Joubert P, Beaupère D, Lelivère P, Wadouachi A, Sanhwan RS, Sangwan-Noeerrl BS (2002) Effects of phenolic compounds on Agrobacterium vir genes and gene transfer induction-a plausible molecular mechanism of phenol binding protein activation. Plant Sci 162:733–743

    Article  CAS  Google Scholar 

  • Lee JH, Hübel A, Schöffl F (1995) Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J 8:603–612

    Article  CAS  PubMed  Google Scholar 

  • Magnuson NS, Linzmaier PM, Gao J, Reeves R, An G (1996) Enhanced recovery of secreted mammalian protein from suspension culture of genetically modified. Protein Expr Purif 7:220–228

    Article  CAS  PubMed  Google Scholar 

  • Masoud SA, Ding X, Johnson LB, White FF, Reeck GR (1996) Expression of a corn bifunctional inhibitor of serine proteinases and insect α-amylases in transgenic tobacco plants. Plant Sci 115:59–69

    Article  CAS  Google Scholar 

  • Mattanovich D, Ruker F, da Camara Machado A, Laimer M, Regner F, Steinkellner H, Himmler G, Katinger H (1989) Efficient transformation of Agrobacterium spp. by electroporation. Nucleic Acids Res 17:6747

    CAS  PubMed  Google Scholar 

  • Moriwaki M, Yamakawa T, Washino T, Kodama T, Igarashi Y (1999a) A comparison of GUS activity after liquid- and air- heat shock treatment in transgenic Nicotiana plumbaginifolia harboring the Arabidopsis HSP18.2 promoter- GUS chimeric gene. Plant Biotechnol 16:303–305

    CAS  Google Scholar 

  • Moriwaki M, Yamakawa T, Washino T, Kodama T, Igarashi Y (1999b) Suppressed phenylalanine ammonia-lyase activity after heat shock in transgenic Nicotiana plumbaginifolia containing an Arabidopsis HSP18.2-Parsley PAL2 chimera gene. J Biosci Bioeng 87:588–593

    Article  CAS  PubMed  Google Scholar 

  • Moriwaki M, Yamakawa T, Washino T, Kodama T, Igarashi Y (1999c) Delayed recovery of β-glucuronidase activity driven by an Arabidopsis heat shock promoter in heat-stressed transgenic Nicotiana plumbaginifolia. Plant Cell Rep 19:96–100

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Pandey GK, Reddy VS, Reddy MK, Deswal R, Bhattacharya A, Sopory SK (2002) Transgenic tobacco expressing Entamoeba histolytica calcium binding protein exhibits enhanced growth and tolerance to salt stress. Plant Sci 162:41–47

    Article  CAS  Google Scholar 

  • Prändl R, Hinderhofer K, Eggers B, Schumacher G, Schöffl F (1998) HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Mol Gen Genet 258:269–278

    Article  PubMed  Google Scholar 

  • Ramakrishna W, Deng Z, Ding C, Handa AK, Ozminkowski RH (2003) A novel small heat shock protein gene, vis1, constributes to pectin depolymerization and juice viscosity in tomato fruit. Plant Physiol 131:725–735

    Article  CAS  PubMed  Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: Chemical factories of secondary metabolites. Biotech Adv 20:101–153

    Article  CAS  Google Scholar 

  • Riva GA, González-Cabrera J, Vázquez-Padrón R, Ayra-Pardo C (1998) Agrobacterium tumefaciens: a natural tool for plant transformation. Electron J Biotechnol 1:118–133

    Article  Google Scholar 

  • Roger D, Lacoux J, Lamblin F, Gaillet D, Dauchel H, Klein D, Balangé AP, David A, Lainé E (2001) Isolation of a flax pectin methylesterase promoter and its expression in transgenic tobacco. Plant Sci 160:713–721

    Article  CAS  PubMed  Google Scholar 

  • Sheikholeslam SN, Weeks PD (1987) Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Mol Biol 8:291–298

    Article  CAS  Google Scholar 

  • Shanks JV, Morgan J (1999) Plant ‘Hairy root’ culture. Curr Opin Biotechnol 10:151–155

    Article  CAS  PubMed  Google Scholar 

  • Sharp JM, Doran PM (1999) Effect of bacitracin on growth and monoclonal antibody production by tobacco hairy roots and cell suspensions. Biotechnol Bioprocess Eng 4:253–258

    Article  CAS  Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629

    Article  Google Scholar 

  • Stachel SE, Nester EW (1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J 5:1445–1454

    CAS  PubMed  Google Scholar 

  • Su WW, Aris R (2003) Continous plant cell perfusion culture: bioreactor characterization and secreted enzyme production. J Biosci Bioeng 95:3–20

    Google Scholar 

  • Sun W, Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophy Acta 1577:1–9

    CAS  Google Scholar 

  • Sunikumar G, Vijayachandra K, Veluthambi K (1999) Preincubation of cut tobacco leaf explants promotes Agrobacterium-mediated transformation by increasing vir gene induction. Plant Sci 141:51–58

    Article  Google Scholar 

  • Tackaberry ES, Dudant AK, Prior F, Tocchi M, Sardana R, Altosaar I, Ganz PR (1999) Development of biopharmaceuticals in plant expression systems: cloning, expression and immunological reactivity of human cytomegalovirus glycoprotein B (UL55) in seeds of transgenic tobacco. Vaccine 17:3020–3029

    Article  CAS  PubMed  Google Scholar 

  • Tada Y, Wakasugi T, Nishikawa A, Furuhashi K, Yamada K (2003) Developmental regulation of grnr coding for a low-molecular-weight heat shock protein during haustorium formation in the seedling of a holoparasitic plant, Cuscuta japonica. Plant Cell Physiol 41:1373–1380

    Article  Google Scholar 

  • Takahashi T, Naito S, Komeda Y (1992) The Arabidopsis HSP18.2 promoter/GUS gene fusion in transgenic Arabidopsis plants: a powerful tool for the isolation of regulatory mutants of the heat-shock response. Plant J 2:751–761

    CAS  Google Scholar 

  • Van de Velde W, Mergeay J, Holsters M, Goormachtig S (2003) Agrobacterium rhizogenes-mediated transformation of Sesbania rostrata. Plant Sci 165:1281–1288

    Article  CAS  Google Scholar 

  • Wehmeyer N, Vierling E (2000) The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol 122:1099–1108

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Kasai T, Garcia MRC, Sawada S, Shoji T, Yamazaki S, Komeda Y, Shinmyo A (1995) Heat-inducible expression system for a foreign gene in cultured tobacco cells using the HSP18.2 promoter of Arabidopsis thaliana. Appl Microbiol Biotechnol 44:466–472

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Prof. Yoshibumi Komeda (Hokkaido University, Japan) for providing the HSP-18.2 gene (PTT119), to Prof. Kouichiro Shimomura (Tokyo University, Japan) for providing A. rhizogenes 1724, and to Dr. Tzu-Hwie Liu (Development Center for Biotechnology, Taiwan) for her kindly provided tobacco seeds. This work was supported by a grant, 91-2313-B-002-358, from the National Science Council, ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kung-Ta Lee.

Additional information

Communicated by I. Chung

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, SC., Liu, HW., Lee, KT. et al. High-efficiency Agrobacterium rhizogenes-mediated transformation of heat inducible sHSP18.2-GUS in Nicotiana tabacum . Plant Cell Rep 26, 29–37 (2007). https://doi.org/10.1007/s00299-006-0175-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0175-9

Keywords

Navigation