Skip to main content
Log in

Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Cowpeas are nutritious grains that provide the main source of protein, highly digestible energy and vitamins to some of the world's poorest people. The demand for cowpeas is high but yields remain critically low, largely because of insect pests. Cowpea germplasm contains little or no resistance to major insect pests and a gene technology approach to adding insect protection traits is now a high priority. We have adapted features of several legume and other transformation systems and reproducibly obtained transgenic cowpeas that obey Mendelian rules in transmitting the transgene to their progeny. Critical parameters in this transformation system include the choice of cotyledonary nodes from developing or mature seeds as explants and a tissue culture medium devoid of auxins in the early stages, but including the cytokinin BAP at low levels during shoot initiation and elongation. Addition of thiol-compounds during infection and co-culture with Agrobacterium and the choice of the bar gene for selection with phosphinothricin were also important. Transgenic cowpeas that transmit the transgenes to their progeny can be recovered at a rate of one fertile plant per thousand explants. These results pave the way for the introduction of new traits into cowpea and the first genes to be trialled will include those with potential to protect against insect pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PAT:

phosphinothricin acetyl transferase

PPT:

phosphinothricin

BAP:

benzylaminopurine

GUS:

β-glucuronidase

References

  • Amitha K, Reddy TP (1996a) Induction of somatic embryogenesis and regeneration in cowpea (Signa sinensis L.). Ad Plant Sci 9:23–28

    Google Scholar 

  • Amitha K, Reddy TP (1996b) Regeneration of plantlets from different explants and callus cultures of Cowpea (Vigna unguiculata L.). Phytomorphology 46:207–211

    Google Scholar 

  • Anand RP, Ganapathi A, Anbazhagan VR, Vengadesan G, Selvaraj N (2000) High frequency plant regeneration via somatic embryogenensis in cell suspension cultures of cowpea, Vigna unguiculata (L.) Walp. In Vitro Cell Dev Biol-Plant 36:475–480

    Article  CAS  Google Scholar 

  • Anand RP, Ganapathi A, Vengadesan G, Selvaraj N, Anbazhagan VR, Kulothungan S (2001) Plant regeneration from immature cotyledon derived callus of Vigna unguiculata (L.) Walp (cowpea). Current Sci 80:671–674

    CAS  Google Scholar 

  • Brar MS, Al-Khayri JM, Morelock TE, Anderson EJ (1999a) Genotypic response of cowpea Vigna unguiculata (L.) to in vitro regeneration from cotyledon explants. In Vitro Cell Dev Biol-Plant 35:8–12

    CAS  Google Scholar 

  • Brar MS, Moore MJ, Al-Khayri JM, Morelock TE, Anderson EJ (1999b) Ethylene inhibitors promote in vitro regeneration of cowpea (Vigna unguiculata L.). In Vitro Cell Dev Biol-Plant 35:222–225

    Article  CAS  Google Scholar 

  • Cheema HK, Bawa J (1991) Clonal multiplication via multiple shoots in some legumes (Vigna unguiculata and Cajanus cajan). Acta Horticulturae 289:93–96

    Google Scholar 

  • Cheng M, Lowe BA, Spencer TM, Ye X, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev Biol-Plant 40:31–45

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin 19:11–15

    Google Scholar 

  • Ehlers JD, Hall AE (1997) Cowpea; (Vigna unguiculata L. Walp.). Field Crops Res 53:187–204

    Article  Google Scholar 

  • FAOSTAT (2004) http://faostat.fao.org/

  • Gamborg O, Miller R, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Garcia JA, Hillie J, Goldbach R (1986) Transformation of cowpea Vigna unguiculata cells with an antibiotic resistance gene using a Ti-Plasmid-derived vector. Plant Sci 44:37–46

    Article  CAS  Google Scholar 

  • Garcia JA, Hillie J, Goldbach R (1987) Transformation of cowpea Vigna unguiculata cells with a full length DNA copy of cowpea mosaic virus m-RNA. Plant Sci 44:89–98

    Article  Google Scholar 

  • Ikea J, Ingelbrecht I, Uwaifo A, Thottappilly G (2003) Stable gene transformation in cowpea (Vigna unguiculata L. walp.) using particle gun method. Afr J Biotechnol 2:211–218

    CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-Glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kakkar RK, Nagar PK, Ahuja PS, Rai VK (2000) Polyamines and plant morphogenesis. Biologia Plantarum 43:1–11

    Article  CAS  Google Scholar 

  • Kormawa PM, Chianu JN, Manyong VM (2000) Cowpea demand and supply patterns in West Africa: The case of Nigeria. in: Proceedings of World Cowpea Conference III, 4-7 September 2000. IITA, Ibadan, Nigeria, pp.376–386 (http://www.iita.org/info/cowpea2.htm)

  • Kulothungan S, Ganapathi A, Shajahan A, Kathiravan K (1995) Somatic embryogenesis in cell suspension culture of cowpea (Vigna unguiculata (L.) Walp). Israel J Plant Sci 43:385–390

    Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967

    Article  PubMed  CAS  Google Scholar 

  • Le BV, Cruz de Carvalho MH, Zuily-Fodil Y, Thi ATP, Van KTT (2002) Direct whole plant regeneration of cowpea (Vigna unguiculata (L.) Walp) from cotyledonary node thin cell layer explants. J Plant Physiol 159:1255–1258

    Article  Google Scholar 

  • Machuka J (2000) Potential role of transgenic approaches in the control of cowpea insect pests. in: Proceedings of World Cowpea Conference III, 4–7 September 2000. IITA, Ibadan, Nigeria, pp 213–222 (http://www.iita.org/info/cowpea2.htm)

  • Machuka J, Adesoye A, Obembe OO (2000) Regeneration and genetic transformation in cowpea. in: Proceedings of World Cowpea Conference III, 4–7 September 2000. IITA, Ibadan, Nigeria, pp. 185–196 (http://www.iita.org/info/cowpea2.htm)

  • Molvig L, Tabe LM, Eggum BO, Moore AE, Craig S, Spencer D, Higgins TJV (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc Natl Acad Sci (USA) 94:8393–8398

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioasay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Muthukumar B, Mariamma M, Gnanam A (1995) Regeneration of plants fom primary leaves of cowpea. Plant Cell, Tissue and Organ Culture 42:153–155

    Article  Google Scholar 

  • Muthukumar B, Mariamma M, Veluthambi K, Gnanam A (1996) Genetic transformation of cotyledon explants of cowpea (Vigna unguiculata L. Walp) using Agrobacterium tumefaciens. Plant Cell Rep 15:980–985

    Article  CAS  Google Scholar 

  • Obembe OO, Kadiri M, Machuka J (2000). Induction of multiple shoots and regeneration from cotyledonary nodes and epicotyls. In: Proceedings of World Cowpea Conference III, 4–7 September 2000. IITA, Ibadan, Nigeria. 32 p

  • Olhoft PM, Somers DA (2001) L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep 20:706–711

    Article  CAS  Google Scholar 

  • Olhoft PM, Flagel LE, Donovan CM, Somers DA (2003) Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216:723–735

    PubMed  CAS  Google Scholar 

  • Paz MM, Shou H, Guo Z, Zhang Z, Banerjee AK, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136:167–179

    Article  CAS  Google Scholar 

  • Pellegrineschi A (1997) In vitro regeneration via organogenesis of cowpea (Vigna unguiculata (L.) Walp.). Plant Cell Rep 17:89–95

    Article  CAS  Google Scholar 

  • Penza R, Lurquin PF, Filippone E (1991) Gene transfer by cocultivation of mature embryos with Agrobacterium tumefaciens: application to cowpea (Vigna unguiculata Walp). J Plant Physiol 138:39–43

    CAS  Google Scholar 

  • Pigeaire A, Abernethy D, Smith PM, Simpson K, Fletcher N, Lu C-Y, Atkins CA, Cornish E (1997) Transformation of grain legume (Lupinus angustifolius L.) via Agrobacterium tumefaciens mediated gene transfer to shoot apices. Mol Breed 3:341–349

    Article  CAS  Google Scholar 

  • Popelka JC, Terryn N, Higgins THV (2004) Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Sci 167:195–206

    Article  CAS  Google Scholar 

  • Saini R, Jaiwal S, Jaiwal PK (2003) Stable genetic transformation of Vigna mungo L. Hepper via Agrobacterium tumefaciens. Plant Cell Rep 21:851–859

    PubMed  CAS  Google Scholar 

  • Sarmah BK, Moore A, Tate W, Molvig L, Morton RL, Rees DP, Chiaiese P, Chrispeels MJ, Tabe LM, Higgins TJV (2004) Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor. Mol Breed 14:73–82

    Article  CAS  Google Scholar 

  • Schroeder HE, Schotz AH, Wardley-Richardson T, Spencer D, Higgins TJV (1993) Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiol 101:751–757

    Article  PubMed  CAS  Google Scholar 

  • Singh BB, Ehlers JD, Sharma B, Freire Filho FR (2000). Recent progress in cowpea breeding. in: Proceedings of World Cowpea Conference III, 4–7 September 2000. IITA, Ibadan, Nigeria, pp. 22–40

Download references

Acknowledgements

We thank HE Schroeder, D Spencer and BK Sarmah for invaluable discussions and gratefully acknowledge funding from The Rockefeller Foundation. We thank members of the Network for Genetic Improvement of Cowpea for Africa (NGICA) for their support and counsel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. V. Higgins.

Additional information

Communicated by H. Lörz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popelka, J.C., Gollasch, S., Moore, A. et al. Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny. Plant Cell Rep 25, 304–312 (2006). https://doi.org/10.1007/s00299-005-0053-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-005-0053-x

Key words

Navigation