Skip to main content
Log in

Agrobacterium-mediated transformation of bottle gourd (Lagenaria siceraria Standl.)

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

We describe a procedure for producing transgenic bottle gourd plants by inoculating cotyledon explants with Agrobacterium tumefaciens strain AGL1 that carries the binary vector pCAMBIA3301 containing a glufosinate ammonium-resistance (bar) gene and the β-d-glucuronidase (GUS) reporter gene. The most effective bacterial infection was observed when cotyledon explants of 4-day-old seedlings were co-cultivated with Agrobacterium for 6–8 days on co-cultivation medium supplemented with 0.1–0.001 mg/l l-α-(2-aminoethoxyvinyl) glycine (AVG). The putatively transformed shoots directly emerged at the proximal end of cotyledon explants after 2–3 weeks of culturing on selection medium containing 2 mg/l dl-phosphinothricin. These shoots were rooted after 3 weeks of culturing on half-strength MS medium containing 0.1 mg/l indole acetic acid and 1 mg/l dl-phosphinothricin. Transgenic plants were obtained at frequencies of 1.9%. Stable integration and transmission of the transgenes in T1 generation plants were confirmed by a histochemical GUS assay, polymerase chain reaction and Southern blot analyses. Genetic segregation analysis of T1 progenies showed that transgenes were inherited in a Mendelian fashion. To our knowledge, this study is the first to show Agrobacterium-mediated transformation in bottle gourd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Acetosyringone:

3′,5′-Dimethoxy-4′hydroxyacetophenone

AVG:

l-α-(2-Aminoethoxyvinyl) glycine

BA:

6-Benzylaminopurine

GUS:

β-d-Glucuronidase

IAA:

Indole acetic acid

PPT:

dl-Phosphinothricin

References

  • An G (1987) Binary Ti vectors for plant transformation and promoter analysis. Methods Enzymol 153:292–305

    Article  CAS  Google Scholar 

  • Ayub R, Guis M, Ben Amor M, Gillot L, Roustan JP, Latche A, Bouzayen M, Pech JC (1996) Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat Biotechnol 14:862–866

    Google Scholar 

  • Chee PP (1990) Transformation of Cucumis sativus tissue by Agrobacterium tumefaciens and the regeneration of transformed plants. Plant Cell Rep 9:245–258

    Article  CAS  Google Scholar 

  • Curtis IS, Nam HG (2000) Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method—plant development and surfactant are important in optimizing transformation efficiency. Transgenic Res 10:363–371

    Article  Google Scholar 

  • Curtis IS, Power JB, Blackhall NW, de Laat AMM, Davey MR (1994) Genotype-independent transformation of lettuce using Agrobacterium tumefaciens. J Exp Bot 45:1441–1449

    CAS  Google Scholar 

  • Dabauza M, Bordas M, Salvador A, Roig LA, Moreno V (1997) Plant regeneration and Agrobacterium-mediated transformation of cotyledon explants of Citrullus colocynthis (L.) Schrad. Plant Cell Rep 16:888–892

    Article  CAS  Google Scholar 

  • D’Halluin K, De Block M, Deneoke J, Janssens J, Leemans J, Reynaerts A, Botterman J (1992) The bar gene as selectable and screenable marker in plant engineering. Methods Enzymol 216:415–426

    PubMed  Google Scholar 

  • Dong JZ, Yang MZ, Jia SR, Chua NH (1991) Transformation of melon (Cucumis melo L.) and expression from the cauliflower mosaic virus 35S promoter in transgenic melon plants. Biotechnology 9:858–863

    Article  CAS  Google Scholar 

  • Edelstein M, Tadmor Y, Abo-Moch F, Karchi Z, Mansour F (2000) The potential of Lagenaria rootstock to confer resistance to the carmine spider mite, Tetranychus cinnabarinus (Acari: Tetranychidae) in Cucurbitaceae. Bull Entomol Res 90:113–117

    CAS  PubMed  Google Scholar 

  • Ezura H, Yuhashi KI, Yasuta T, Minamisawa K (2000) Effect of ethylene on Agrobacterium tumefaciens-mediated gene transfer to melon. Plant Breed 119:75–79

    Article  CAS  Google Scholar 

  • Fang G, Grumet R (1990) Agrobacterium tumefaciens-mediated transformation and regeneration of muskmelon plants. Plant Cell Rep 9:160–164

    Article  CAS  Google Scholar 

  • Galperin M, Patlis L, Ovadia A, Wolf D, Zelcer A, Kenigsbuch D (2003) A melon genotype with superior competence for regeneration and transformation. Plant Breed 122:66–69

    Article  Google Scholar 

  • Gonsalves C, Xue B, Yepes M, Fuchs M, Ling K, Namba S, Chee P, Slightom JL, Gonsalves D (1994) Transferring cucumber mosaic virus-white leaf strain coat protein gene into Cucumis melo L. and evaluating transgenic plants for protection against infections. J Am Soc Hortic Sci 119:345–355

    CAS  Google Scholar 

  • Hirschi KD (2001) Vacuolar H+/Ca+ transporter: Who’s directing the traffic? Trends Plant Sci 6:100–104

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Keller G, Spatola L, McCabe D, Martinell B, Swain W, John ME (1997) Transgenic cotton resistant to herbicide bialaphos. Transgenic Res 6:385–392

    Article  CAS  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967

    CAS  PubMed  Google Scholar 

  • Lee JM, Oda M (2003) Grafting of herbaceous vegetable and ornamental crops. Hortic Rev 28:61–124

    Google Scholar 

  • Lee JM, Bang HJ, Han HS (1998) Grafting of vegetables. J Jpn Soc Hortic Sci 67:1098–1114

    Google Scholar 

  • Mohapatra U, McCabe MS, Power JB, Schepers F, Van der Arend A, Davey MR (1999) Expression of the bar gene confers herbicide resistance in transgenic lettuce. Transgenic Res 8:33–44

    Article  CAS  Google Scholar 

  • Murashige T, Skoog FA (1962) Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nishibayashi S, Kaneko H, Hayakawa T (1996) Transformation of cucumber (Cucumis sativus L.) plants using Agrobacterium tumefaciens and regeneration from hypocotyl explants. Plant Cell Rep 15:809–814

    Article  CAS  Google Scholar 

  • Park SH, Rose SC, Zapata C, Srivatanakul M, Smith RH (1998) Cross-protection and selectable marker genes in plant transformation. In Vitro Cell Dev Biol Plant 4:117–121

    Google Scholar 

  • Qing CM, Fan L, Lei Y, Bouchez D, Tourneur C, Yan L, Robaglia C (2000) Transformation of Pakchoi (Brassica rapa L. ssp. chinensis) by Agrobacterium infiltration. Mol Breed 6:67–72

    Article  CAS  Google Scholar 

  • Rando RR (1974) Chemistry and enzymology of kcat inhibitors. Science 185:320–324

    CAS  PubMed  Google Scholar 

  • Spanu P, Boller T (1989) Ethylene biosynthesis in tomato plants infected by Phytophthora infestans. J Plant Physiol 134:533–537

    Google Scholar 

  • Srivatanakul M, Park SH, Salas MG, Smith RH (2000) Additional virulence genes influence transgene expression: transgene copy number, integration pattern and expression. J Plant Physiol 157:685–690

    CAS  Google Scholar 

  • Tabei Y, Kitade S, Nishizawa Y, Kikuchi N, Kayano T, Hibi T, Akutsu K (1998) Transgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold (Botryris cinerea). Plant Cell Rep 17:159–164

    Article  CAS  Google Scholar 

  • Thompson CJ, Rao Movva N, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6:2519–2523

    CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

  • Zeng P, Vadnais DA, Zhang Z, Polacco JC (2004) Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill]. Plant Cell Rep 22:478–482

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. Kim.

Additional information

Communicated by K.K. Kamo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, JS., Kim, C.K., Park, S.H. et al. Agrobacterium-mediated transformation of bottle gourd (Lagenaria siceraria Standl.). Plant Cell Rep 23, 692–698 (2005). https://doi.org/10.1007/s00299-004-0874-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-004-0874-z

Keywords

Navigation