Skip to main content
Log in

Adventitious root formation in Arabidopsis thaliana thin cell layers

  • Cell Biology and Morphogenesis
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

This paper describes, for the first time, de novo adventitious root formation from thin cell layers (TCLs) of Arabidopsis thaliana. The objective of the study was to determine the optimal hormonal and light conditions and the optimal exogenous Ca2+ concentration for obtaining adventitious rooting (AR) from A. thaliana TCLs and to identify the tissue(s) involved in the process. The results show that maximum AR was obtained with a single-phase method in the presence of 10 μM indole-3-butyric acid and 0.1 μM kinetin under continuous darkness for 30 days and with 0.6 mM exogenous CaCl2. The endodermis was the only tissue involved in root meristemoid formation. The role of Ca2+ in AR and the importance of using Arabidopsis TCLs in studies on the genetic/biochemical control of AR are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–f
Fig. 2a–m
Fig. 3a–k

Similar content being viewed by others

Abbreviations

AR :

Adventitious rooting

CIM :

Callus-inducing medium

Col-0 :

Columbia ecotype

2,4-D :

2,4-Dichlorophenoxyacetic acid

HFM :

Hormone-free medium

HM :

Medium with 10 μM IBA and 0.1 μM Kin

IBA :

Indole-3-butyric acid

Kin :

Kinetin

LS :

Longitudinal section

NAA :

α-Naphthaleneacetic acid

RIM :

Root-inducing medium

TCL :

Thin cell layer

WS :

Wassilewskija ecotype

References

  • Altamura MM (1996) Root histogenesis in herbaceous and woody explants cultured in vitro. A critical review. Agronomie 16:589–602

    Google Scholar 

  • Avery GS (1933) Structure and germination of tobacco seed and the development anatomy of the seedling plant. Am J Bot 20:309–327

    Google Scholar 

  • Bellamine J, Penel C, Greppin H, Gaspar T (1998) Confirmation of the role of auxin and Calcium in the late phases of adventitious root formation. Plant Growth Regul 26:191–194

    Article  CAS  Google Scholar 

  • Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inze D (1995) Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7:1405–1419

    CAS  PubMed  Google Scholar 

  • Busse JS, Evert RF (1999) Vascular differentiation and transition in the seedling of Arabidopsis thaliana (Brassicaceae). Int J Plant Sci 160:241–251

    Article  Google Scholar 

  • Celenza JL, Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9:2131–2142

    CAS  PubMed  Google Scholar 

  • Cousson A, Tran Thanh Van K (1993) Influence of ionic composition of the culture medium on de novo flower formation in tobacco thin cell layers. Can J Bot 71:506–511

    CAS  Google Scholar 

  • Cunninghame ME, Hall JL (1986) The effect of Ca2+ antagonists and inhibitors of secretory processes on auxin-induced elongation and fine structure of Pisum sativum stem segments. Protoplasma 133:149–159

    CAS  Google Scholar 

  • Demarty M, Morvan C, Thellier M (1984) Calcium and the cell wall. Plant Cell Environ 7:441–448

    CAS  Google Scholar 

  • Falasca G, Altamura MM (2003) Histological analysis of adventitious rooting in Arabidopsis thaliana (L.) Heynh seedlings. Plant Biosystems 137:265–274

    Google Scholar 

  • Fukaki H, Wysocka-Diller J, Kato T, Fujisawa H, Benfey PN, Tasaka M (1998) Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J 14:425–430

    Article  CAS  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirement of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    CAS  PubMed  Google Scholar 

  • Hepler PK, Wayne RO (1985) Ca2+ and plant development. Annu Rev Plant Physiol 36:397–469

    CAS  Google Scholar 

  • Jones RS, Mitchell CA (1989) Calcium ion involvement in growth inhibition of mechanically stressed soybean (Glycine max) seedlings. Physiol Plant 76:598–602

    CAS  PubMed  Google Scholar 

  • King JJ, Stimart DP, Fisher RH, Bleecker AB (1995) A mutant altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell 7:2023–2037

    Article  CAS  PubMed  Google Scholar 

  • Kurata T, Yamamoto KT (1997) Light-stimulated root elongation in Arabidopsis thaliana. J Plant Physiol 151:346–351

    CAS  Google Scholar 

  • Liners F, Gaspar T, Van Cutsem P (1994) Acetyl- and methyl-esterification of pectins of friable and compact sugar-beet calli: consequences for intercellular adhesion. Planta 192:545–556

    CAS  Google Scholar 

  • Lomax TL, Muday GK, Rubery PH (1995) Auxin transport. In: Davies PJ (ed) Plant hormones. Kluwer, Dordrecht, pp 509–530

  • Miller RH (1980) Amitosis and endocytogenesis in the fruit of Malus sylvestris. Ann Bot 46:567–575

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissues cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Oka M, Ueda J, Miyamoto K, Yamamoto R, Hoson T, Kamisaka S (1995) Effect of stimulated microgravity on auxin polar transport in inflorescence axis of Arabidopsis thaliana. Biol Sci Space 9:331–336

    CAS  PubMed  Google Scholar 

  • Ozawa S, Yasutani I, Fukuda H, Komamine A, Suriyama M (1998) Organogenic responses in tissue culture of srd mutants of Arabidopsis thaliana. Development 125:135–142

    CAS  PubMed  Google Scholar 

  • Reverberi M, Falasca G, Lauri P, Caboni E, Altamura MM (2001) Indoleacetic acid induces xylem formation instead of rooting in walnut (Juglans regia L.) microcuttings. Plant Biosystems 135:71–77

    Google Scholar 

  • Reynolds T (1990) Interactions between calcium and auxin during pollen androgenesis in anther cultures of Solanum carolinense L. Plant Sci 72:109–114

    Article  CAS  Google Scholar 

  • Roux SJ (1994) Signal transduction in phytochrome responses. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants, 2nd edn. Kluwer, Dordrecht, pp 187–209

  • Roux SJ, Slocum RD (1982) Role of calcium in mediating cellular functions important for growth and development in higher plants. In: Cheung WY (ed) Calcium and cell function, vol 3. Academic, New York, pp 409–453

  • Takahashi F, Sato-Nara K, Kobayashi K, Suzuki M, Suzuki H (2003) Sugar-induced adventitious roots in Arabidopsis seedlings. J Plant Res 116:83–91

    CAS  PubMed  Google Scholar 

  • Tanimoto S, Harada H (1986) Involvement of calcium in adventitious bud initiation in Torenia stem segments. Plant Cell Physiol 27:1–10

    Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    PubMed  Google Scholar 

  • Torrigiani P, Altamura MM, Capitani F, Serafini-Fracassini D, Bagni N (1989) De novo root formation in thin cell layers of tobacco: changes in free and bound polyamines. Physiol Plant 77:294–301

    CAS  Google Scholar 

  • Tran Thanh Van M, Dien NT, Chlyah A (1974) Regulation of organogenesis in small explants of superficial tissue of Nicotiana tabacum L. Planta 119:149–159

    Google Scholar 

  • Van Staden J, Harty AR (1988) Cytokinins and adventitious root formation. In: Davis TD, Haissig BE, Sankhla N (eds) Adventitious root formation in cuttings. Dioscorides, Portland, pp 185–201

  • Worley CK, Zenser N, Jason R, Rouse D, Leyser O, Theologis A, Callis J (2000) Degradation of Aux/IAA proteins is essential for normal auxin signalling. Plant J 21:553–562

    Article  CAS  PubMed  Google Scholar 

  • Zobel RW (1986) Rhizogenetics (root genetics) of vegetable crops. Hortic Sci 21:956–959

    Google Scholar 

Download references

Acknowledgements

This work was supported by Università La Sapienza (Rome, Italy), Progetto Ateneo, to M.M.A. The authors express their gratitude to Marisa Tomassi for support in standardizing the Arabidopsis TCL technique, and to Stefania Biondi for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Altamura.

Additional information

Communicated by A. Altman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falasca, G., Zaghi, D., Possenti, M. et al. Adventitious root formation in Arabidopsis thaliana thin cell layers. Plant Cell Rep 23, 17–25 (2004). https://doi.org/10.1007/s00299-004-0801-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-004-0801-3

Keywords

Navigation