Skip to main content
Log in

Interactions of phytochromes A, B1 and B2 in light-induced competence for adventitious shoot formation in hypocotyl of tomato (Solanum lycopersicum L.)

  • Physiology and Biochemistry
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The interactions of phytochrome A (phyA), phytochrome B1 (phyB1) and phytochrome B2 (phyB2) in light-dependent shoot regeneration from the hypocotyl of tomato was analysed using all eight possible homozygous allelic combinations of the null mutants. The donor plants were pre-grown either in the dark or under red or far-red light for 8 days after sowing; thereafter hypocotyl segments (apical, middle and basal portions) were transferred onto hormone-free medium for culture under different light qualities. Etiolated apical segments cultured in vitro under white light showed a very high frequency of regeneration for all of the genotypes tested besides phyB1phyB2, phyAphyB1 and phyAphyB1phyB2 mutants. Evidence is provided of a specific interference of phyB2 with phyA-mediated HIR to far-red and blue light in etiolated explants. Pre-treatment of donor plants by growth under red light enhanced the competence of phyB1phyB2, phyAphyB1 and phyAphyB1phyB2 mutants for shoot regeneration, whereas pre-irradiation with far-red light enhanced the frequency of regeneration only in the phyAphyB1 mutant. Multiple phytochromes are involved in red light- and far-red light-dependent acquisition of competence for shoot regeneration. The position of the segments along the hypocotyl influenced the role of the various phytochromes and the interactions between them. The culture of competent hypocotyl segments under red, far-red or blue light reduced the frequency of explants forming shoots compared to those cultured under white light, with different genotypes having different response patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HIR::

High irradiance response

LFR::

Low fluence response

Pfr::

Far-red absorbing form of phytochrome

phyA::

Phytochrome A

phyB1::

Phytochrome B1

phyB2::

Phytochrome B2

phyA(B1, B2)::

Phytochrome mutant deficient in phyA (B1, B2)

phyAphyB1(B1B2,AB2)::

Double phytochrome mutant deficient in phyA and phyB1(B1, B2)

phyAphyB1phyB2::

Triple mutant deficient in phyA, phyB1 and phyB2

VLFR::

Very low fluence response

WT::

Wild-type tomato

References

  • Ahmad M, Cashmore AR (1997) The blue-light receptor cryptochrome1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana. Plant J 11:421–427

    Article  CAS  PubMed  Google Scholar 

  • Batschauer A, Rocholl M, Kaiser T, Nagatani A, Furuya M, Schäfer E (1996) Blue and UV-A light-regulated CHS expression in Arabidopsis independent of phytochrome A and phytochrome B. Plant J 9:63–69

    Article  CAS  Google Scholar 

  • Bertram L, Lercari B (2000a) Evidence against the involvement of phytochrome in UVB-induced inhibition of stem growth in green tomato plants. Photosynth Res 64:107–117

    Article  CAS  Google Scholar 

  • Bertram L, Lercari B (2000b) Phytochrome A and phytochrome B1 control the acquisition of competence for shoot regeneration in tomato hypocotyl. Plant Cell Rep 19:604–609

    Article  CAS  Google Scholar 

  • Burritt DJ, Leung DWM (2003) Adventitious shoot regeneration from Begonia × erythrophylla petiole sections is developmentally sensitive to light quality. Physiol Plant 118:289–296

    Article  CAS  Google Scholar 

  • Casal JJ (2000) Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants. Photochem Photobiol 71:1-11

    CAS  PubMed  Google Scholar 

  • Cerdan PD, Yanovsky MJ, Reymundo FC, Nagatani A, Staneloni RJ, Whitelam GC, Casal JJ (1999) Regulation of phytochrome B signaling by phytochrome A and FHY1 in Arabidopsis thaliana. Plant J 18:499–507

    PubMed  Google Scholar 

  • Chory J, Li J (1997) Gibberellins, brassinosterids and light-regulated development. Plant Cell Environ 20:801–806

    CAS  Google Scholar 

  • Christianson ML, Warnick DA (1983) Competence and determination in the process of in vitro shoot organogenesis. Dev Biol 95:288–293

    CAS  PubMed  Google Scholar 

  • Christianson ML, Warnick DA (1988) Organogenesis in vitro as a developmental process. Hortic Sci 23:515–519

    Google Scholar 

  • Dahleen LS (1999) Donor-plant environment effects on regeneration from barley embryo-derived callus. Crop Sci 39:682–685

    Google Scholar 

  • Drumm-Herrel H, Mohr, H (1978) The mode of interaction between blue (UV) light photoreceptor and phytochrome in anthocyanin formation of the Sorghum seedling. Photochem Photobiol 27:241–248

    Google Scholar 

  • Hauser BA, Pratt LH, Cordonnier-Pratt MM (1997) Absolute quantification of five phytochrome transcripts in seedlings and mature plants of tomato (Solanum lycopersicum L.). Planta 201:379–387

    Article  CAS  PubMed  Google Scholar 

  • Hauser B, Cordonnier-Pratt M-M, Pratt LH (1998) Temporal and photoregulated expression of five tomato phytochrome genes. Plant J 14:431–440

    Article  CAS  PubMed  Google Scholar 

  • Hedden P (1999) Recent advances in gibberellin biosynthesis. J Exp Bot 50:553–563

    Article  CAS  Google Scholar 

  • Hennig L, Poppe C, Unger S, Whitelam GC (1999) Control of hypocotyl elongation in Arabidopsis thaliana by photoreceptor interaction. Planta 208:257–263

    Article  CAS  PubMed  Google Scholar 

  • Hess JR, Carman JG (1998) Embryogenic competence of immature wheat embryos: genotype, donor plant environment, and endogenous hormone levels. Crop Sci 38:249–253

    CAS  Google Scholar 

  • Kendrick RE, Kerckhoffs LHJ, van Tuinen A, Koorneef M (1997) Photomorphogenic mutants of tomato. Plant Cell Environ 20:746–751

    CAS  Google Scholar 

  • Kerckhoffs LHJ, Kelmenson PM, Schreuder MEL, Kendrick CI, Kendrick RE, Hanhart CJ, Koorneef M, Pratt LH, Cordonnier-Pratt MM (1999) Characterization of the gene encoding the apoprotein of phytochrome B2 in tomato, and identification of molecular lesions in two mutant alleles. Mol Gen Genet 261:901–907

    Article  CAS  PubMed  Google Scholar 

  • Lazarova, GI, Kerckhoffs LHJ, Brandstadter J, Matsui M, Kendrick RE, Cordonnier-Pratt M-M, Pratt LH (1998a) Molecular analysis of PHYA in wild-type and phytochrome A-deficient mutant of tomato. Plant J 14:653–662

    Article  CAS  PubMed  Google Scholar 

  • Lazarova, GI, Kubota T, Frances S, Peters JL, Hughes MJG, Brandstadter J, Szell M, Matsui, M, Kendrick RE, Cordonnier-Pratt MM, Pratt LH (1998b) Characterization of tomato PHYB1 and identification of molecular defects in four mutant alleles. Plant Mol Biol 38:1137–1146

    Article  CAS  PubMed  Google Scholar 

  • Lercari B, Drumm H, Mohr H (1980) Phytochrome-mediated induction of ascorbate oxidase as affected by light pretreatments. In: De Greef J (ed) Photoreceptors and plant development. Antwerp University Press, Antwerp, pp 317–327

  • Lercari B, Moscatelli S, Ghirardi E, Niceforo R, Bertram L (1999a) Photomorphogenic control of shoot regeneration from etiolated and light-grown hypocotyls of tomato. Plant Sci 140:53–62

    Article  CAS  Google Scholar 

  • Lercari B, Moscatelli S, Ghirardi E, Niceforo R, Bertram L (1999b) Photocontrol of shoot regeneration from hypocotyls of tomato. In: Altman A, Zeiv M, Izhar S (eds) Plant biotechnology and in vitro biology in the 21st century. Kluwer, Dordrecht, pp 69–72

  • Lercari B, Manetti A, Bertram L (2002) Temporal and spatial pattern of light-dependent acquisition of competence for shoot formation in tomato hypocotyl. Light pulse conditions. Adv Hortic Sci 16:17–24

    Google Scholar 

  • Liscum E, Stowe-Evans EL (2000) Phototropism: A “simple” physiological response modulated by multiple interacting photosensory-response pathways. Photochem Photobiol 72:273–282

    CAS  PubMed  Google Scholar 

  • Mohr H (1994) Coaction between pigment systems. In: Kendrick RE, Kronenberg HHM (eds) Photomorphogenesis in plants. Kluwer, Dordrecht, pp 353–373

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Padua VLM, Fernandes LD, de Oliveira DE, Mansur E (1998) Effects of auxin and light treatments on donor plants on shoot production from indica-type rice (Oryza sativa L.). In Vitro Cell Dev Biol-Plant 34:285–288

    Google Scholar 

  • Pratt LH, Cordonnier-Pratt MM, Hauser B, Caboche M (1995) Tomato contains two differentially expressed genes encoding B-type phytochromes, neither of which can be consider an ortholog of Arabidopsis phytochrom B. Planta 197:203–209

    CAS  PubMed  Google Scholar 

  • Perrotta G, Ninu L, Flamma F, Weller JL, Kendrick RE, Nebuloso E, Giuliano G (2000) Tomato contains homologues of Arabidopsis cryptochromes 1 and 2. Plant Mol Biol 42:765–773

    Article  CAS  PubMed  Google Scholar 

  • Pugliesi C, Cionini G, Bertram L, Lercari B (1999) A histological study of light-dependent shoot regeneration in hypocotyl explants of tomato cultured in vitro. Adv Hortic Sci 13:168–172

    Google Scholar 

  • Quail PH (1998) The phytochrome family: dissection of functional roles and signalling pathways among family members. Philos Trans R Soc London Ser B Biol Sci 353:1399–1403

    Article  CAS  Google Scholar 

  • Saitou T, Tokutomi S, Harada H, Kamada H (2000) Quantitative correlation between the concentration of photoreactive phytochrome and light-induced formation of adventitious shoots in horse-radihs hairy roots. J Exp Bot 50:1837–1844

    Article  Google Scholar 

  • Short TW (1999) Overexpression of Arabidopsis phytochrome B inhibits phytochrome A function in the presence of sucrose. Plant Physiol 119:1497–1505

    Article  CAS  PubMed  Google Scholar 

  • Somers DE, Quail PH (1995) Temporal and spatial expression patterns of phyA and phyB genes in Arabidopsis. Plant J 7:413–427

    Article  CAS  PubMed  Google Scholar 

  • Tyburski J, Tretyn A (1999) Organogenetic response of photomorphogenic mutants of tomato. J Plant Physiol 155:568–575

    CAS  Google Scholar 

  • van Tuinen A, Kerckhoffs LHJ, Nagatani A, Kendrick RE, Koorneef M (1995a) Far-red light-insensitive, phytochrome A-deficient mutants of tomato. Mol Gen Genet 246:133–141

    PubMed  Google Scholar 

  • van Tuinen A, Kerckhoffs LHJ, Nagatani A, Kendrick RE, Koorneef M (1995b) A temporarily red light-insensitive mutant of tomato lacks a light-stable B-like phytochrome. Plant Physiol 108:939–947

    PubMed  Google Scholar 

  • van Tuinen A, Cordonnier M-M, Pratt LH, Verkerk R, Zabel P, Koorneef M (1997) The mapping of phytochrome genes and photomorphogenic mutants of tomato. Theor Appl Genet 94:115–122

    Article  Google Scholar 

  • Wade HK, Bibikova TN, Valentine WJ, Jenkins GJ (2001) Interactions within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue. Plant J 25:675–685

    Article  CAS  PubMed  Google Scholar 

  • Weller JL, Schreuder MEL, Smith H, Koornneef M, Kendrick RE (2000) Physiological interactions of phytochrome A, B1 and B2 in the control of development in tomato. Plant J 24:345–356

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. R. Kendrick for his generous gift of tomato mutant seeds, Alberto Manetti for excellent technical assistance. This work was supported by MIUR, progetti di interesse nazionale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Lercari.

Additional information

Communicated by R. Reski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lercari, B., Bertram, L. Interactions of phytochromes A, B1 and B2 in light-induced competence for adventitious shoot formation in hypocotyl of tomato (Solanum lycopersicum L.). Plant Cell Rep 22, 523–531 (2004). https://doi.org/10.1007/s00299-003-0725-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-003-0725-3

Keywords

Navigation