Skip to main content
Log in

Production of transgenic lily plants by Agrobacterium-mediated transformation

  • Cell Biology and Morphogenesis
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

A system for the production of transgenic plants was developed for the Oriental hybrid lily, Lilium cv. Acapulco, by Agrobacterium-mediated genetic transformation. Filament-derived calli were co-cultivated with A. tumefaciens strain EHA101/pIG121Hm, which harbored a binary vector carrying the neomycin phosphotransferase II, hygromycin phosphotransferase, and intron-containing β-glucuronidase genes in the T-DNA region. Six hygromycin-resistant (Hygr) culture lines were obtained from 200 calli by scratching them with sandpaper prior to inoculation and using NH4NO3-free medium for co-cultivation and a hygromycin-containing regeneration medium for selection. Hygr culture lines regenerated shoots, which developed into plantlets following transfer to a plant growth regulator-free medium. All of these plantlets were verified to be transgenic by GUS histochemical assay and inverse PCR analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–H.
Fig. 2A, B.

Similar content being viewed by others

Abbreviations

AS :

Acetosyringone (3,5-dimethoxy-4-hydroxy-acetophenone)

BA :

Benzyladenine

CaMV :

Cauliflower mosaic virus

GUS :

β-Glucuronidase

HPT :

Hygromycin phosphotransferase

Hyg r :

Hygromycin-resistant

NOS :

Nopaline synthase

NPTII :

Neomycin phosphotransferase II

PGR :

Plant growth regulator

PIC :

Picloram (4-amino-3,5,6-trichloropicolinic acid)

References

  • Bennett MD, Smith JB (1991) Nuclear DNA amounts in angiosperms. Philos Trans R Soc London Ser B 334:309–345

    CAS  Google Scholar 

  • Bidney D, Scelonge C, Martich J, Burrus M, Sims L, Huffman G (1992) Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens. Plant Mol Biol 18:301–313

    CAS  PubMed  Google Scholar 

  • Brasileiro ACM, Aragäo FJL, Rossi S, Dusi DMA, Gomes Barros LM, Rech EL (1996) Susceptibility of common and tepary beans to Agrobacterium spp. strains and improvement of Agrobacterium-mediated transformation using microprojectile bombardment. J Am Soc Hortic Sci 121:810–815

    Google Scholar 

  • Cheng YH, Yang JS, Yeh SD (1996) Efficient transformation of papaya by coat protein gene of papaya ringspot virus mediated by Agrobacterium following liquid-phase wounding of embryogenic tissues with carborundum. Plant Cell Rep 16:127–132

    Article  CAS  Google Scholar 

  • Cordero de Mesa M, Jiménez-Bermúdez S, Pliego-Alfaro F, Quesada MA, Mercado JA (2000) Agrobacterium cells as microprojectile coating: a novel approach to enhance stable transformation rates in strawberry. Aust J Plant Physiol 27:1093–1100

    Google Scholar 

  • Does MP, Dekker BMM, de Groot MJA, Offringa R (1991) A quick method to estimate the T-DNA copy number in transgenic plants at an early stage after transformation, using inverse PCR. Plant Mol Biol 17:151–153

    CAS  PubMed  Google Scholar 

  • Eady CC, Weld RJ, Lister CE (2000) Agrobacterium tumefaciens-mediated transformation and transgenic-plant regeneration of onion (Allium cepa L.). Plant Cell Rep 19:376–381

    Article  CAS  Google Scholar 

  • Fladung M (1999) Gene stability in transgenic aspen (Populus). I. Flanking DNA sequences and T-DNA structure. Mol Gen Genet 260:574–581

    CAS  PubMed  Google Scholar 

  • Gheysen G, Van Montagu M, Zambryski P (1987) Integration of Agrobacterium tumefaciens T-DNA involves rearrangements of target DNA sequences. Proc Natl Sci USA 84:6169–6173

    CAS  Google Scholar 

  • Grayburn WS, Vick BA (1995) Transformation of sunflower (Helianthus annuus L.) following wounding with glass beads. Plant Cell Rep 14:285–289

    CAS  Google Scholar 

  • Han DS, Niimi Y, Nakano M (1997) Regeneration of haploid plant from anther culture of the Asiatic hybrid lily 'Connecticut King'. Plant Cell Tissue Organ Cult 47:153–158

    Google Scholar 

  • Hiei Y, Komari T, Ishida Y, Saito H (2000) Development of Agrobacterium-mediated transformation method for monocotyledonous plants. Breed Res 2:205–213

    Google Scholar 

  • Iglesias VA, Moscone EA, Papp I, Neuhuber F, Michalowski S, Phelan T, Spiker S, Matzke M, Matzke AJM (1997) Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell 9:1251–1264

    CAS  PubMed  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plant: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    CAS  Google Scholar 

  • Kisaka H, Kameya T (1998) Fertile transgenic asparagus plants produced by Agrobacterium-mediated transformation. Plant Biotechnol 15:177–181

    CAS  Google Scholar 

  • Knittel N, Gruber V, Hahne G, Lénée P (1994) Transformation of sunflower (Helianthus annuus L.): a reliable protocol. Plant Cell Rep 14:81–86

    CAS  Google Scholar 

  • Koncz C, Martini N, Mayerhofer R, Koncz-Kálmán Z, Köber H, Redei GP, Schell J (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA 86:8467–8471

    CAS  PubMed  Google Scholar 

  • Kondo T, Hasegawa H, Suzuki M (2000) Transformation and regeneration of garlic (Allium sativum L.) by Agrobacterium-mediated gene transfer. Plant Cell Rep 19:989–993

    CAS  Google Scholar 

  • Langeveld SA, Gerrits MM, Derks AFLM, Boonekamp PM, Bol JF (1995) Transformation of lily by Agrobacterium. Euphytica 85:97–100

    CAS  Google Scholar 

  • Lichtenstein CP, Draper J (1985) Genetic engineering of plants. In: Glover DM (ed) DNA cloning: a practical approach, vol 2. IRL Press, Washington D.C., p 78

  • Mathur J, Szabados L, Schaefer S, Grunenberg B, Lossow A, Esther J-S, Schell J, Koncz C, Koncz-Kálmán Z (1998) Gene identification with sequenced T-DNA tags generated by transformation of Arabidopsis cell suspension. Plant J 13:707–716

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi H, Usami T, Tanaka I (1995) High level of GUS gene expression driven by pollen-specific promoters in electroporated lily pollen protoplasts. Sex Plant Reprod 8:205–209

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nishihara M, Ito M, Tanaka I, Kyo M, Ono K, Irifune K, Morikawa M (1993) Expression of the ß-glucuronidase gene in pollen of lily (Lilium longiflorum), tobacco (Nicotiana tabacum), Nicotiana rustica, and peony (Paeonia lactiflora) by particle bombardment. Plant Physiol 102:357–361

    CAS  PubMed  Google Scholar 

  • Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623

    CAS  PubMed  Google Scholar 

  • Ohta S, Mita S, Hattori T, Nakamura K (1990) Construction and expression in tobacco of a β-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol 31:805–813

    CAS  Google Scholar 

  • Potrykus I (1991) Gene transfer to plants: assessment of published approaches and results. Annu Rev Plant Physiol Plant Mol Biol 42:205–225

    CAS  Google Scholar 

  • Robinson K, Firoozababy E (1993) Transformation of floriculture crops. Sci Hortic 55:83–99

    CAS  Google Scholar 

  • Sanford JC, Smith FD, Russell JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483–510

    CAS  PubMed  Google Scholar 

  • Suzuki S, Nakano M (2002) Agrobacterium-mediated production of transgenic plants Muscari armeniacum Leichtl. ex Bak. Plant Cell Rep 20:835–841

    CAS  Google Scholar 

  • Suzuki S, Niimi Y, Sakakibara T, Hosokawa K, Yamamura S, Nakano M (1998) Effects of several antibiotics and bialaphos on the growth and organ formation of Lilium formosanum calli and transient expression of the gusA gene after co-cultivation with Agrobacterium tumefaciens. Plant Biotechnol 15:213–216

    CAS  Google Scholar 

  • Suzuki S, Supaibulwatana K, Mii M, Nakano M (2001) Production of transgenic plants of Liliaceous ornamental plant Agapanthus praecox ssp. orientalis (Leighton) Leighton via Agrobacterium-mediated transformation of embryogenic calli. Plant Sci 161:89–97

    Article  CAS  Google Scholar 

  • Triglia T, Peterson MG, Kemp DJ (1988) A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res 16:8186

    CAS  PubMed  Google Scholar 

  • Tsuchiya T, Takumi S, Shimada T (1996) Transient expression of a reporter gene in bulbscales and immature embryos of three Lilium species is affected by 5′ upstream sequences and culture conditions. Physiol Plant 98:699–704

    Article  CAS  Google Scholar 

  • Watad AA, Yun D-J, Matsumoto T, Niu X, Wu Y, Kononowicz AK, Bressan RA, Hasegawa PM (1998) Microprojectile bombardment-mediated transformation of Lilium longiflorum. Plant Cell Rep 17:262–267

    Google Scholar 

  • Wilmink, A, van de Ven BCE, Dons JJM (1995) Activity of constitutive promoters in various species from the Liliaceae. Plant Mol Biol 28:949–955

    CAS  PubMed  Google Scholar 

  • Zheng S-J, Henken B, Sofiari E, Jacobsen E, Krens FA, Kik C (2001) Molecular characterization of transgenic shallots (Allium cepa L.) by adaptor ligation PCR (AL-PCR) and sequencing of genomic DNA flanking T-DNA borders. Transgen Res 10:237–245

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Hoshi.

Additional information

Communicated by H. Ebinuma

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoshi, Y., Kondo, M., Mori, S. et al. Production of transgenic lily plants by Agrobacterium-mediated transformation. Plant Cell Rep 22, 359–364 (2004). https://doi.org/10.1007/s00299-003-0700-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-003-0700-z

Keywords

Navigation