Advertisement

Plant Cell Reports

, Volume 22, Issue 1, pp 59–63 | Cite as

Genome size and base composition of five Pinus species from the Balkan region

  • F. Bogunic
  • E. Muratovic
  • S. C. Brown
  • S. Siljak-Yakovlev
Genetics and Genomics

Abstract

The 2C DNA content and base composition of five Pinus (2n=24) species and two Pinus subspecies from the Balkan region have been estimated by flow cytometry. P. heldreichii (five populations) and P. peuce (one population) were assessed for the first time, as also were subspecies of P. nigra (three populations—two of subspecies nigra and one of subspecies dalmatica) along with P. sylvestris, and P. mugo from the same region. The 2C DNA values of these Pinus ranged from 42.5 pg to 54.9 pg (41.7–53.8×10bp), and the base composition was quite stable (about 39.5% GC). Significant differences were observed between two subspecies of P. nigra and even between two populations of subsp. nigra. The two other species (P. sylvestris and P. mugo) had 2C values of 42.5 pg and 42.8 pg, respectively, while that of P. peuce was 54.9 pg. These genome sizes are in accordance with published values except for P. sylvestris, which was 20% below estimates made by other authors.

Keywords

Pinus Flow cytometry Balkan area Interspecific and intraspecific variations 

Notes

Acknowledgements

The authors kindly acknowledge Dalibor Ballian, Dr. Edita Solic, and J. Buselic for collecting material and Odile Robin, Olivier Cartrice, and Marie-Thérèse Crosnier for their technical support.

References

  1. Barow M, Meister A (2002) Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding. Cytometry 47:1-7CrossRefPubMedGoogle Scholar
  2. Bennett MD, Smith JB (1991) Nuclear DNA amounts in angiosperms. Philos Trans R Soc London Ser B 334:309–345Google Scholar
  3. Bennett MD, Bhandol P, Leitch IJ (2000) Nuclear DNA amounts in angiosperms and their modern uses—807 new estimates. Ann Bot 86:859–909Google Scholar
  4. Bou Dagher-Kharrat M, Grenier G, Bariteau M, Brown SC, Siljak-Yakovlev S, Savouré A (2001) Karyotype analysis reveals interspecific differentiation in the genus Cedrus despite genome size and base composition constancy. Theor Appl Genet 103:846–854CrossRefGoogle Scholar
  5. Cavalier-Smith T (1985) The evolution of genome size. John Wiley, ChichesterGoogle Scholar
  6. Cerbah M, Coulaud J, Brown SC, Siljak-Yakovlev S (1998) Evolutionary DNA variation in the genus Hypochoeris. Heredity 80:261–266Google Scholar
  7. De Ferré Y, Gaussen H (1970) Affinités systematiques de Pinus peuce Griseb. Zb simpoziumot Molikata Skopje, pp 33–38Google Scholar
  8. Dhillon SS (1987) DNA in tree species. In: Bouga JM, Deuzan DJ (eds) Cell and tissue culture in forestry. Martinus Nijhoff, Dordrecht, pp 298–560Google Scholar
  9. Dhir NK, Miksche JP (1974) Intraspecific variation of nuclear DNA content in Pinus resinosa. Can J Genet Cytol 16:77–83Google Scholar
  10. Fukarek P, Vidakovic M (1965) Espèces de pins hybrides ou de transition sur le mont Prenj, en Herzegovine (Pinus × nigradermis Fuk. et Vid.). Naučno društvo Bosne i Hercegovine, Radovi, Odjeljenje privredno-tehničkih nauka, 28. Knjiga 8:68–87Google Scholar
  11. Galbraith D, Harkins K, Maddox J, Ayres N, Sharma D, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051Google Scholar
  12. Godelle B, Cartier D, Marie D, Brown CS, Siljak-Yakovlev S (1993) Heterochromatin study demonstrating the non-linearity of fluorometry useful for calculations genomic base composition. Cytometry 14:618–626PubMedGoogle Scholar
  13. Greilhuber J (1986) Severely distorted Feulgen DNA amounts in Pinus (Coniferophytina) after nonadditive fixation as a result of meristematic self-tanning with vacuole contents. Can J Genet Cytol 28:409–415Google Scholar
  14. Greilhuber J (1988) Critical reassessment of DNA content in plants. In: Brandham PE (ed) Kew chromosome conference. HMSO, London, pp 39–50Google Scholar
  15. Hall SE, Dvorak JS, Johnston HJ, Price HJ, Williams CG (2000) Flow cytometric analysis of DNA content for tropical and temperate New World pines. Ann Bot 86:1081–1086CrossRefGoogle Scholar
  16. Hizume M (1988) Karyomorphological studies in the family Pinaceae. Mem Fac Educ Ehime Univ Nat Sci 8:1–108Google Scholar
  17. Joyner KL, Wang XR, Johnston JS, Price JH, Williams CG (2001) DNA content for Asian pines parallels New World relatives. Can J Bot 79:192–196CrossRefGoogle Scholar
  18. Le Thierry d'Ennequin M, Panaud O, Siljak-Yakovlev S, Sarr A (1998) First evaluation of nuclear DNA content in Setaria genus by flow cytometry. J Hered 89:556–559CrossRefGoogle Scholar
  19. Marie D, Brown SC (1993) A cytometric exercise in plant DNA histograms with 2C values for 70 species. Biol Cell 78:41–51PubMedGoogle Scholar
  20. Martel E, De Nay D, Siljak-Yakovlev S, Brown SC, Sarr A (1997) Genome size and base composition in pearl millet and fourteen related species. J Hered 88:139–143Google Scholar
  21. Miksche JP (1968) Quantitative study of intraspecific variation of DNA per cell in Picea glauca and Pinus banksiana. Can J Genet Cytol 10:590–600Google Scholar
  22. Murray BG (1998) Nuclear DNA amount in gymnosperms. Ann Bot 82 [Suppl A]:3–15Google Scholar
  23. O'Brien I, Smith D, Gardner R, Murray B (1996) Flow cytometric determination of genome size in Pinus. Plant Sci 115:91–99CrossRefGoogle Scholar
  24. Ohri D, Khoshoo TN (1986) Genome size in gymnosperms. Plant Syst Evol 153:119–132Google Scholar
  25. Schmidt A, Doudrick RL, Heslop-Harrison JS, Schmidt T (2000) The contribution of short repeats of low sequence complexity to large conifer genomes. Theor Appl Genet 101:7–14CrossRefGoogle Scholar
  26. Siljak-Yakovlev S, Cerbah M, Coulaud J, Stoian V, Brown SC, Jelenic S, Papes D (2002) Nuclear DNA content, base composition, heterochromatin and rDNA in Picea omorika and Picea abies. Theor Appl Genet 104:505–512CrossRefGoogle Scholar
  27. Teoh SB, Rees H (1976) Nuclear DNA amounts in populations of Picea and Pinus species. Heredity 36:123–137Google Scholar
  28. Valkonen JPT, Nygren M, Ylönen A, Mannonen L (1994) Nuclear DNA content of Pinus sylvestris L. as determined by laser flow cytometry. Genetica 92:203–207Google Scholar
  29. Vidakovic M (1991) Morphology and variations in conifers, 2nd edn. Graficki zavod Hrvatske, ZagrebGoogle Scholar
  30. Wakamiya I, Newton R, Johnston JS, Price HJ (1993) Genome size and environmental factors in the genus Pinus. Am J Bot 80:1235–1241Google Scholar
  31. Wakamyia I, Price HJ, Messina MG, Newton RJ (1996) Pine genome diversity and water relations. Physiol Plant 96:13–20CrossRefGoogle Scholar
  32. Zoldos V, Papes D, Brown SC, Panaud O, Siljak-Yakovlev S (1998) Genome size and base composition of seven Quercus species: inter- and intra- population variation. Genome 41:162–168CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • F. Bogunic
    • 1
    • 2
  • E. Muratovic
    • 2
  • S. C. Brown
    • 3
  • S. Siljak-Yakovlev
    • 2
    • 4
  1. 1.Faculty of ForestryUniversity of SarajevoSarajevoBosnia and Herzegovina
  2. 2.Laboratory for research and protection of endemic resources, Department of Biology, Faculty of SciencesUniversity of SarajevoSarajevoBosnia and Herzegovina
  3. 3.Institut des Sciences du VégétalCNRS UPR 2355Gif-sur-YvetteFrance
  4. 4.Ecologie, Systématique, EvolutionUniversité Paris-SudOrsayFrance

Personalised recommendations