Skip to main content
Log in

Analysis of regulatory elements of the promoter and the 3′ untranslated region of the maize Hrgp gene coding for a cell wall protein

  • Genetics and Genomics
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Hydroxyproline-rich glycoproteins (HRGP) are structural components of the plant cell wall. Hrgp genes from maize and related species have a conserved 500 bp sequence in the 5′-flanking region, and all Hrgp genes from monocots have an intron located in the 3′ untranslated region. To study the role of these conserved regions, several deletions of the Hrgp gene were fused to the β-glucuronidase (GUS) gene and used to transform maize tissues by particle bombardment. The overall pattern of GUS activity directed by sequential deletions of the Hrgp promoter was different in embryos and young shoots. In embryos, the activity of the full-length Hrgp promoter was in the same range as that of the p35SI promoter construct, based on the strong 35S promoter, whereas in the fast-growing young shoots it was 20 times higher. A putative silencer element specific for young shoots was found in the −1,076/−700 promoter region. Other major cis elements for Hrgp expression are probably located in the regions spanning −699/−510 and −297/−160. Sequences close to the initial ATG and mRNA leader were also important since deletion of the region −52/+16 caused a 75% reduction in promoter activity. The presence of the Hrgp intron in the 3′ untranslated region changed the levels of GUS activity directed by the Hrgp and the 35S promoters. This pattern of activity was complex, and was dependent on the promoter and cell type analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–C.
Fig. 3A, B.
Fig. 4.
Fig. 5A, B.
Fig. 6.

Similar content being viewed by others

References

  • Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell protein: a novel, rapid defense response. Cell 70:21–30

    CAS  PubMed  Google Scholar 

  • Buchman AR, Berg P (1988) Comparison of intron-dependent and intron-independent gene expression. Mol Cell Biol 8:3495–3505

    Google Scholar 

  • Caelles C, Delseny M, Puigdomènech P (1992) The hydroxyproline-rich glycoprotein gene from Oryza sativa. Plant Mol Biol 18:617–619

    CAS  PubMed  Google Scholar 

  • Callis J, Fromm M, Walbot V (1987) Introns increase gene expression in cultured maize cells. Genes Dev 1:1183–1200

    CAS  PubMed  Google Scholar 

  • Chaubet N, Philipps G, Chaboute ME, Ehling M, Gigot C (1986) Nucleotide sequences of two corn histone H3 genes. Genomic organization of the corn histone H3 and H4 genes. Plant Mol Biol 6:253–263

    CAS  Google Scholar 

  • Chen J, Varner JE (1985) An extracellular matrix protein in plants: characterization of a genomic clone for carrot extensin. EMBO J 4:2145–2151

    CAS  Google Scholar 

  • Chourey P, Zurawski DB (1981) Callus formation from protoplasts of a maize cell culture. Theor Appl Genet 59:237–244

    Google Scholar 

  • Cornejo MJ, Luth D, Blankenship KM, Anderson OD, Blechl AE (1993) Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol 23:567–581

    CAS  PubMed  Google Scholar 

  • Deyholos MK, Sieburth LE (2000) Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell 12:799–810

    Article  Google Scholar 

  • Duret L, Bucher P (1997) Searching for regulatory elements in human noncoding sequences. Curr Opin Struct Biol 7:399–406

    Article  CAS  PubMed  Google Scholar 

  • Elliott KA, Shirsat AH (1998) Promoter regions of the extA extensin gene from Brassica napus control activation in response to wounding and tensile stress. Plant Mol Biol 37:675–687

    CAS  PubMed  Google Scholar 

  • Fu H, Kim SY, Park WD (1995a) High-level tuber expression and sucrose inducibility of a potato Sus4 sucrose synthase gene require 5′ and 3′ flanking sequences and the leader intron. Plant Cell 7:1387–1394

    CAS  PubMed  Google Scholar 

  • Fu H, Kim SY, Park WD (1995b) A potato SUS3 sucrose synthase gene contains a context-dependent 3′ element and a leader intron with both positive and negative tissue-specific effects. Plant Cell 7:1395–1403

    Article  CAS  PubMed  Google Scholar 

  • Gallie DR, Young TE (1994) The regulation of gene expression in transformed maize aleurone and endosperm protoplasts. Analysis of promoter activity, intron enhancement, and mRNA untranslated regions on expression. Plant Physiol 106:929–939

    CAS  PubMed  Google Scholar 

  • Gidekel M, Jimenez B, Herrera-Estrella L (1996) The first intron of the Arabidopsis thaliana gene coding for elongation factor 1β contains an enhancer-like element. Gene 170:210–206

    Article  Google Scholar 

  • Huang MTF, Gorman CM (1990) Intervening sequences increase efficiency of RNA 3′ processing and accumulation of cytoplasmic RNA. Nucleic Acids Res 18:937–947

    CAS  PubMed  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    CAS  Google Scholar 

  • Josè M, Puigdomènech P (1993) Structure and expression of genes coding for structural proteins of the plant cell wall. New Phytol 125:259–282

    Google Scholar 

  • Joshi CP (1987) An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res 15:6643–6653

    CAS  PubMed  Google Scholar 

  • Keller B, Lamb CJ (1989) Specific expression of a novel cell wall hydroxyproline-rich glycoprotein gene in lateral root initiation. Genes Dev 3:1639–1646

    CAS  PubMed  Google Scholar 

  • Kieliszewski MJ, Lamport DTA (1994) Extensin: repetitive motifs, functional sites, post-translational codes and phylogeny. Plant J 5:157–172

    Google Scholar 

  • Kiesselbach TA (1980) The structure and reproduction of corn, 1st edn. University of Nebraska Press, Lincoln, Neb.

  • Kosugi S, Ohashi Y, Nakajima K, Arai Y (1990) An improved assay for beta-glucuronidase in transformed-cells—methanol almost completely suppresses a putative endogenous beta-glucuronidase activity. Plant Sci 70:133–140

    CAS  Google Scholar 

  • Lawton MA, Lamb CJ (1987) Transcriptional activation of plant defense genes by fungal elicitor, wounding, and infection. Mol Cell Biol 7:335–341

    CAS  PubMed  Google Scholar 

  • Leon P, Planckaert F, Walbot V (1991) Transient gene-expression in protoplasts of Phaseolus vulgaris isolated from a cell-suspension culture. Plant Physiol 95:968–972

    CAS  Google Scholar 

  • Ludevid MD, Ruiz-Avila L, Vallés MP, Stiefel V, Torrent M, Torné JM, Puigdomènech P (1990) Expression of genes for cell-wall proteins in dividing and wounded tissues of Zea mays L. Planta 180:524–529

    CAS  Google Scholar 

  • Luehrsen KR, Walbot V (1994) Intron creation and polyadenylation in maize are directed by AU-rich RNA. Genes Dev 8:1117–1130

    CAS  PubMed  Google Scholar 

  • McElroy D, Zhang W, Cao J, Wu R (1990) Isolation of an actin promoter for use in rice transformation. Plant Cell 2:163–171

    CAS  PubMed  Google Scholar 

  • McElroy D, Blowers AD, Jenes B, Wu R (1991) Construction of expression vectors based on the rice actin 1 (Act1) 5′ region for use in monocot transformation. Mol Gen Genet 231:150–160

    CAS  PubMed  Google Scholar 

  • Menossi M, Martínez-Izquierdo JA, Puigdomènech P (1997) Tissue specific activity and hormone control of the promoter of the gene coding for a maize hydroxyproline-rich glycoprotein. Plant Sci 125:189–200

    Article  CAS  Google Scholar 

  • Menossi M, Puigdomènech P, Martínez-Izquierdo JA (2000) Improved analysis of promoter activity in biolistically transformed plant cells. Biotechniques 28:54–58

    CAS  PubMed  Google Scholar 

  • Meshi T, Taoka K, Iwabuchi M (1998) S phase-specific expression of plant histone genes. J Plant Res 111:247–251

    CAS  Google Scholar 

  • Mogen BD, MacDonald MH, Graybosch R, Hunt AG (1990) Upstream sequences other than AAUAAA are required for efficient messenger RNA 3′-end formation in plants. Plant Cell 2:1261–1272

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Niwa M, Rose SD, Berget SM (1990) In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes Dev 4:1552–1559

    CAS  PubMed  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1990) Structure and expression of a tobacco beta-1,3-glucanase gene. Plant Mol Biol 15:941–946

    Google Scholar 

  • Ohtsubo N, Iwabuchi M (1994) The conserved 3′-flanking sequence, AATGGAAATG, of the wheat histone H3 gene is necessary for the accurate 3′-end formation of mRNA. Nucleic Acids Res 22:1052–1058

    CAS  PubMed  Google Scholar 

  • Quandt K, Frech K, Karas H, Wingender E, Werner T (1995) MatInd and MatInspector—new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 23:4878–4884

    CAS  PubMed  Google Scholar 

  • Raz R, Crétin C, Puigdomènech P, Martínez-Izquierdo JA (1991) The sequence of a hydroxyproline-rich glycoprotein gene from Sorghum vulgare. Plant Mol Biol 16:365–367

    CAS  PubMed  Google Scholar 

  • Raz R, Josè M, Moya A, Martínez-Izquierdo JA, Puigdomènech P (1992) Different mechanisms generating sequence variability are revealed in distinct regions of the hydroxyproline-rich glycoprotein gene from maize and related species. Mol Gen Genet 233:252–259

    CAS  PubMed  Google Scholar 

  • Ruiz-Avila L, Ludevid MD, Puigdomènech P (1991) Differential expression of a hydroxyproline-rich cell-wall protein gene in embryonic tissues of Zea mays L. Planta 184:130–136

    CAS  Google Scholar 

  • Ruiz-Avila L, Burgess SR, Stiefel V, Ludevid MD, Puigdomènech P (1992) Accumulation of the cell wall Hrgp mRNA is an early event in maize embryo cell differentiation. Proc Natl Acad Sci USA 89:2414–2418

    CAS  PubMed  Google Scholar 

  • Salts Y, Kenigsbuch D, Wachs R, Gruissem W, Barg R (1991) DNA sequence of the tomato fruit expressed proline-rich-protein gene TPFR-F1 reveals an intron within the 3′ untranslated transcript. Plant Mol Biol 18:407–409

    Google Scholar 

  • Salvà I, Jamet É (2001) Expression of the tobacco Ext 1.4 extensin gene upon mechanical constraint and localization of regulatory regions. Plant Biol 3:32–41

    Article  Google Scholar 

  • Sheng J, Jeong J, Mehdy MC (1993) Developmental regulation and phytochrome-mediated induction of mRNAs encoding a proline-rich protein, glycine-rich proteins, and hydroxyproline-rich glycoproteins in Phaseolus vulgaris L. Proc Natl Acad Sci USA 90:828–832

    CAS  PubMed  Google Scholar 

  • Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23

    Google Scholar 

  • Showalter AM, Zhou J, Rumeau D, Worst SG, Varner JE (1991) Tomato extensin and extensin-like cDNAs: structure and expression in response to wounding. Plant Mol Biol 16:547–565

    CAS  PubMed  Google Scholar 

  • Simpson GG, Filipowicz W (1996) Splicing of precursors to mRNA in higher plants: mechanism, regulation and sub-nuclear organisation of the spliceosomal machinery. Plant Mol Biol 32:1–41

    CAS  PubMed  Google Scholar 

  • Sinibaldi RM, Mettler IJ (1992) Intron splicing and intron-mediated enhanced expression in monocots. Prog Nucleic Acid Res Mol Biol 42:229–257

    CAS  PubMed  Google Scholar 

  • Smith LG (2001) Plant cell division: building walls in the right places. Nat Rev 2:33–39

    CAS  PubMed  Google Scholar 

  • Stiefel V, Pérez-Grau L, Albericio F, Giralt E, Ruiz-Avila L, Ludevid MD, Puigdomènech P (1988) Molecular cloning of cDNAs encoding a putative cell wall protein from Zea mays and immunological identification of related polypeptides. Plant Mol Biol 11:483–493

    CAS  Google Scholar 

  • Stiefel V, Ruiz-Avila L, Raz R, Valles MP, Gomez J, Pages M, Martínez-Izquierdo JA, Ludevid MD, Langdale JA, Nelson T, Puigdomènech P (1990) Expression of a maize cell wall hydroxyproline-rich glycoprotein gene in early leaf and root vascular differentiation. Plant Cell 2:785–793

    Article  CAS  PubMed  Google Scholar 

  • Tagle DA, Koop BF, Goodman M, Slightom JL, Hess DL, Jones RT (1988) Embryonic ε and γ globin genes of a prosimian primate (Galago crassicaudatus) nucleotide and amino acid sequences, developmental regulation and phylogenetic footprints. J Mol Biol 203:439–455

    CAS  PubMed  Google Scholar 

  • Tagu D, Walker N, Ruiz-Avila L, Burgess S, Martínez-Izquierdo JA, Leguay J-J, Netter P, Puigdomènech P (1992) Regulation of the maize Hrgp gene expression and wounding. mRNA accumulation and qualitative expression analysis of the promoter by microprojectile bombardment. Plant Mol Biol 20:529–538

    CAS  PubMed  Google Scholar 

  • Vallés MP, Bernues J, Azorin F, Puigdomènech P (1991) Nuclease sensitivity of a maize HRGP gene in chromatin and in naked DNA. Plant Sci 78:225–230

    Article  Google Scholar 

  • Vasil V, Clancy M, Ferl RJ, Vasil IK, Hannah C (1989) Increased gene expression by the first intron of maize Shrunken-1 locus in grass species. Plant Physiol 91:1575–1579

    CAS  Google Scholar 

  • Xu D, Lei M, Wu R (1995) Expression of the rice Osgrp1 promoter-GUS reporter gene is specifically associated with cell elongation/expansion and differentiation. Plant Mol Biol 28:455–471

    Google Scholar 

  • Ye ZH, Varner JE (1991) Tissue-specific expression of cell wall proteins in developing soybean tissues. Plant Cell 3:23–37

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. P. Fontanet for invaluable help with the maize plants and Drs. S. Prat, S. Wessler and V. Walbot for providing the plasmid constructs. This research was supported by the Dirección General de Política Científica (grant PB93-0043) and Plan Nacional de Investigación Científica y Técnica (grant BIO 94-0734). M.M. was the recipient of a predoctoral fellowship from CNPq/RHAE, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Menossi.

Additional information

Communicated by R. Reski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menossi, M., Rabaneda, F., Puigdomènech, P. et al. Analysis of regulatory elements of the promoter and the 3′ untranslated region of the maize Hrgp gene coding for a cell wall protein. Plant Cell Rep 21, 916–923 (2003). https://doi.org/10.1007/s00299-003-0602-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-003-0602-0

Keywords

Navigation