Skip to main content
Log in

Points of regulation for auxin action

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

There have been few examples of the application of our growing knowledge of hormone action to crop improvement. In this review we discuss what is known about the critical points regulating auxin action. We examine auxin metabolism, transport, perception and signalling and identify genes and proteins that might be keys to regulation, particularly the rate-limiting steps in various pathways. Certain mutants show that substrate flow in biosynthesis can be limiting. To date there is little information available on the genes and proteins of catabolism. There have been several auxin transport proteins and some elegant transport physiology described recently, and the potential for using transport proteins to manage free indole-3-acetic acid (IAA) concentrations is discussed. Free IAA is very mobile, and so while it may be more practical to control auxin action through managing the receptor and signalling pathways, the candidate genes and proteins through which this can be done remain largely unknown. From the available evidence, it is clear that the reason for so few commercial applications arising from the control of auxin action is that knowledge is still limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

IAA :

Indole-3-acetic acid

IAAld :

Indole-3-acetaldehyde

IPA :

Indole-3-pyruvate

1-NAA :

Naphthalene-1-acetic acid

NPA :

1-N-naphthylphthalamic acid

TAM :

Tryptamine

References

  • Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9–17

    PubMed  Google Scholar 

  • Abel S, Nguyen MD, Theologis A (1995) The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis. J Mol Biol 251:533–549

    Article  CAS  PubMed  Google Scholar 

  • Bak S, Feyereisen R (2001) The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol 127:108–118

    Article  CAS  PubMed  Google Scholar 

  • Bak S, Tax FE, Feldmann KA, Galbraith DW, Feyereisen R (2001) CYP83Bl, a cytochrome P450 at the metabolic branch point of auxin and glucosinolate biosynthesis in Arabidopsis. Plant Cell 13:101–111

    CAS  PubMed  Google Scholar 

  • Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett M, Sandberg G, Bellini C (2000) The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc Natl Acad Sci USA 97:14819–14824

    Article  CAS  PubMed  Google Scholar 

  • Bartel B (1997) Auxin biosynthesis. Annu Rev Plant Physiol 48:49–64

    Google Scholar 

  • Bartel B, LeClere S, Magidin M, Zolman BK (2001) Inputs to the active indole-3-acetic acid pool: de novo synthesis, conjugate hydrolysis, and indole-3-butyric acid ß-oxidation. J Plant Growth Regul 20:198–216

    Article  CAS  Google Scholar 

  • Bauly JM, Sealy IM, Macdonald H, Brearley J, Droge S, Hilmer S, Robinson DG, Venis MA, Blatt MR, Lazarus CM, Napier RM (2000) Overexpression of auxin-binding protein heightens the sensitivity of guard cells to auxin. Plant Physiol 124:1229–1238

    Article  CAS  PubMed  Google Scholar 

  • Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R (2001) The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128:4057–4067

    CAS  PubMed  Google Scholar 

  • Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schultz B, Feldmann KA (1996) Arabidopsis AUXl gene: a permease-like regulator of root gravitropism. Science 273:948–950

    CAS  PubMed  Google Scholar 

  • Bhalerao RP, Eklof J, Ljung K, Marchant A, Bennett M, Sandberg G (2002) Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J 29:325–332

    Article  CAS  PubMed  Google Scholar 

  • Brown DE, Rashotte AM, Murphy AS, Normlanly J, Tague BW, Peer W A, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535

    Article  CAS  PubMed  Google Scholar 

  • Butler JH, Hu SQ, Brady SR, Dixon MW, Muday GK (1998) In vitro and in vivo evidence for actin association of the naphthylphthalamic acid-binding protein from zucchini hypocotyls. Plant J 13:291–301

    Article  CAS  PubMed  Google Scholar 

  • Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swamp R, Graham N, Inze D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

    Article  CAS  PubMed  Google Scholar 

  • Chamarro J, Ostin A, Sandberg G (2001) Metabolism of indole-3-acetic acid by orange (Citrus sinensis) flavedo tissue during fruit development. Phytochemistry 57:79–187

    Article  Google Scholar 

  • Chen J-G, Ullah H, Young JC, Sussman MR, Jones AM (200l) ABPl is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev 15:902–911

    Article  Google Scholar 

  • Chen L, Ortiz-Lopez A, Jung A, Bush DR (2001) ANT1, an aromatic and neutral amino acid transporter in Arabidopsis. Plant Physiol 125:1813–1820

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Hilson P, Sedbrook J, Rosen E, Caspar, Masson PH (1998) The Arabidopsis thaliana AGRAVITROPIC1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA 95:15112–15117

    Google Scholar 

  • Ciardi J, Klee H (2001) Regulation of ethylene-mediated responses at the level of the receptor. Ann Bot 88:813–822

    Article  CAS  Google Scholar 

  • Colon-Carmona A, Chen DL, Yeh KC, Abel S (2000) Aux/IAA proteins are phosphorylated by phytochrome in vitro. Plant Physiol 124:1728–1738

    CAS  PubMed  Google Scholar 

  • Cooney TP, Nonhebel HM (1991) Biosynthesis of indole-3-acetic acid in tomato shoots: measurement, mass spectral identification and incorporation of H2 from H2O2 into indole-3-acetic acid, d- and l-tryptophan, indole-3-pyruvic acid and tryptamine. Planta 184:368–376

    CAS  Google Scholar 

  • Delbarre A, Muller P, Guern J (1998) Short-lived and phosphorylated proteins contribute to carrier-mediated efflux, but not to influx, of auxin in suspension-cultured tobacco cells. Plant Physiol 116:833–844

    CAS  PubMed  Google Scholar 

  • Deruere J, Jackson K, Garbers C, Soll D, DeLong A (1999) The RCN1-encoded subunit of the naphthylphthalamic acid-binding protein phosphatase 2A increases phosphatase activity in vivo. Plant J 20:389–399

    Article  CAS  PubMed  Google Scholar 

  • Donzella G, Spena A, Rotino GL (2000) Transgenic parthenocarpic eggplants: superior germplasm for increased winter production. Mol Breed 6:79–86

    Article  Google Scholar 

  • Ficcadenti N, Sestili S, Pandolfini T, Cirillo C, Rotino GL, Spena A (1999) Genetic engineering of parthenocarpic fruit development in tomato. Mol Breed 5:463–470

    Article  Google Scholar 

  • Friml J, Palme K (2002) Polar auxin transport—old questions and new concepts? Plant Mol Biol 49:273–284

    Article  CAS  PubMed  Google Scholar 

  • Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    Google Scholar 

  • Gaedeke N, Klein M, Kolukisaoglu U, Forestier C, Müller A, Ansorge M, Becker D, Mamnun Y, Kuchler K, Schulz B, Mueller-Roeber B, Martinoia E (2001) The Arabidopsis thaliana ABC transporter AtgMRP5 controls root development and stomata movement. EMBO J 20:1875–1887

    Google Scholar 

  • Gälweiler L, Guan C, Műller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230

    PubMed  Google Scholar 

  • Garbers C, DeLong A, Deruere J, Bernasconi P, Soll D (1996) A mutation in protein phosphatase 2A regulatory subunit affects auxin transport in Arabidopsis. EMBO J 15:2115–2124

    CAS  PubMed  Google Scholar 

  • Geldner N, Friml J, Stierhof YD, Jurgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428

    Google Scholar 

  • Gil P, Dewey E, Friml J, Zhao Y, Snowden K, Putterill J, Palme K, Estelle M, Chory J (2001) BIG, a callossin-like protein required for polar auxin transport in Arabidopsis. Genes Dev 15:1985–1997

    Article  CAS  PubMed  Google Scholar 

  • Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414:271–276

    Article  CAS  PubMed  Google Scholar 

  • Grebe M, Friml J, Swarup R, Ljung K, Sandberg G, Terlou M, Palme K, Bennett MJ, Scheres B (2002) Cell polarity signaling in Arabidopsis involves a BFA-sensitive auxin influx pathway. Curr Biol 12:329–334

    Article  CAS  PubMed  Google Scholar 

  • Guilfoyle TJ, Hagen G (2001) Auxin response factors. J Plant Growth Regul 20:281–291

    Article  CAS  Google Scholar 

  • Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411

    Article  CAS  PubMed  Google Scholar 

  • Hellmann H, Estelle M (2002) Plant development: regulation by protein degradation. Science 297:793–797

    Article  CAS  PubMed  Google Scholar 

  • Hu SQ, Brady SR, Kovar DR, Staiger CJ, Clark GB, Roux SJ, Muday GK (2000) Identification of plant actin binding proteins by F-actin affinity chromatography. Plant J 24:127–137

    Article  CAS  PubMed  Google Scholar 

  • Hull AK, Rekha V, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyse the first step of the tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97:2379–2384

    Article  CAS  PubMed  Google Scholar 

  • Jackson RG, Lim EK, Li Y, Kowalczyk M, Sandberg G, Hoggett J, Ashford DA, Bowles DJ (2001) Identification and biochemical characterisation of an Arabidopsis indole-3-acetic acid glucosyltransferase. J Biol Chem 276:4350–4356

    Article  CAS  PubMed  Google Scholar 

  • Jones AM, Im K-H, Savka MA, Wu M-J, DeWitt G, Shillito R, Bunns AN (1998) Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science 282:1114–1117

    CAS  PubMed  Google Scholar 

  • Kowalczyk M, Sandberg G (2001) Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiol 127:1845–1853

    Article  CAS  PubMed  Google Scholar 

  • Laswell J, Rogg LE, Nelson DC, Rongey C, Bartel B (2000) Cloning and characterisation of IAR1, a gene required for auxin conjugate sensitivity in Arabidopsis. Plant Cell 12:2395–2408

    Article  PubMed  Google Scholar 

  • LeClere S, Tellez R, Rampey RA, Matsuda SPT, Bartel B (2002) Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J Biol Chem 277:20446–20452

    Article  CAS  PubMed  Google Scholar 

  • Leyser HMO (2001) Auxin signalling: the beginning, the middle and the end. Curr Opin Plant Biol 4:382–386

    Article  CAS  PubMed  Google Scholar 

  • Leyser HMO, Lincoln CA, Timpte C, Lammer D, Turner J, Estelle M (1993) Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme-E1. Nature 364:161–164

    CAS  PubMed  Google Scholar 

  • Li HM, Altschmied L, Chory J (1994) Arabidopsis mutants define downstream branches in the phototransduction pathway. Genes Dev 8:339–349

    CAS  PubMed  Google Scholar 

  • Ljung K, Bhalerao R, Sandberg G (2001a) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28:465–474

    Google Scholar 

  • Ljung K, Ostin A, Lioussane L, Sandberg G (2001b) Developmental regulation of indole-3-acetic acid turnover in Scots pine seedlings. Plant Physiol 125:464–475

    Article  CAS  PubMed  Google Scholar 

  • Luschnig C (2001) Auxin transport: why plants like to think BIG. Curr Biol 11:831–833

    Article  Google Scholar 

  • Luschnig C, Gaxiola RA, Grisafi P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12:2175–2187

    CAS  PubMed  Google Scholar 

  • Marchant A, Bhalerao R, Casimiro I, Eklof J, Casero PJ, Bennett M, Sandberg G (2002) AUX1 promotes lateral root formation by facilitating IAA distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14:589–597

    Article  CAS  PubMed  Google Scholar 

  • Martineau B, Houck CM, Sheehy RE, Hiatt WR (1994) Fruit-specific expression of the A. tumefaciens isopentenyl transferase gene in tomato-effects on fruit ripening and defense-related gene expression in leaves. Plant J 5:11–19

    CAS  Google Scholar 

  • Moctezuma E (1999) Changes in auxin patterns in developing gynophores of the peanut plant (Arachis hypogea L.). Ann Bot 3:235–242

    Article  Google Scholar 

  • Morris DA, Robinson JS (1998) Targeting of auxin carriers to the plasma membrane: differential effects of Brefeldin A on the traffic of auxin uptake and efflux carriers. Planta 205:606–612

    CAS  Google Scholar 

  • Morris DA, Rubery PH, Jarman J, Sabater M (1991) Effects of inhibitors of protein synthesis on transmembrane auxin transport on Cucurbita pepo L. hypocotyl segments. J Exp Bot 42:773–783

    CAS  Google Scholar 

  • Muday GK (2000) Maintenance of asymmetric cellular localization of an auxin transport protein through interaction with the actin cytoskeleton. J Plant Growth Regul 19:385–396

    CAS  PubMed  Google Scholar 

  • Muday GK, DeLong A (2001) Polar auxin transport: controlling where and how much. Trends Plant Sci 6:535–542

    CAS  PubMed  Google Scholar 

  • Muday GK, Murphy AS (2002) An emerging model of auxin transport regulation. Plant Cell 14: 293–299

    Google Scholar 

  • Müller A, Weiler EW (2000) IAA synthase, an enzyme complex from Arabidopsis thaliana catalyzing the formation of indole-3-acetic acid from (S)-tryptophan. Biol Chem 381:679–686

    PubMed  Google Scholar 

  • Napier RM (2001) Models of auxin binding. J Plant Growth Regul 20:244–254

    Article  CAS  Google Scholar 

  • Napier RM, David KM, Perrot-Rechenmann C (2002) A short history of auxin-binding proteins. Plant Mol Biol 49:339–348

    Google Scholar 

  • Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13:2441–2454

    CAS  PubMed  Google Scholar 

  • Normanly J, Bartel B (1999) Redundancy as a way of life-IAA metabolism. Curr Opin Plant Biol 2:207–213

    Article  CAS  PubMed  Google Scholar 

  • Ouellet F, Overvoorde PJ, Theologis A (2001) IAA17/AXR3: biochemical insight into an auxin mutant phenotype. Plant Cell 13:829–841

    Article  CAS  PubMed  Google Scholar 

  • Parry G, Delbarre A, Marchant A, Swarup R, Perrot-Rechenmann C, Bennett MJ (2001) Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation auxI. Plant J 25:399–406

    Google Scholar 

  • Rashotte AM, DeLong A, Muday GK (2001) Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth. Plant Cell 13:1683–1697

    Article  CAS  PubMed  Google Scholar 

  • Reed RC, Brady SR, Muday GK (1998) Inhibition of auxin movement from the shoot to the root inhibits lateral root development in Arabidopsis. Plant Physiol 118:1369–1378

    Article  CAS  PubMed  Google Scholar 

  • Ribnicky DM, Cohen JD, Hu W-S, Cooke TJ (2002) An auxin surge following fertilisation in carrots: a mechanism for regulating plant totipotency. Planta 214:505–509

    CAS  PubMed  Google Scholar 

  • Robinson JS, Albert AC, Morris DA (1999) Differential effects of brefeldin A and cycloheximide on the activity of auxin efflux in Cucurbita pepo L. J Plant Physiol 155:678–684

    CAS  Google Scholar 

  • Ruck A, Palme K, Venis MA, Napier RM, Felle HH (1993) Patch-clamp analysis establishes a role for an auxin binding protein in the auxin stimulation of plasma membrane current in Zea mays protoplasts. Plant J 4:41–46

    Article  Google Scholar 

  • Ruegger M, Dewey E, Hobbie L, Brown D, Bernasconi P, Turner J, Muday G, Estelle M (1997) Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell 9:745–757

    Article  CAS  PubMed  Google Scholar 

  • Scherer GFE, Paul RU, Holk A (2000) Phospholipase A(2) in auxin and elicitor signal transduction in cultured parsley cells (Petroselinum crispum L.). Plant Growth Regul 32:123–128

    Article  CAS  Google Scholar 

  • Sekimoto H, Seo M, Kawakkami N, Komono T, Desloire S, Liotenberg S, Marion-Poll A, Caboche M, Kamiya Y, Koshiba T (1998) Molecular cloning and characterisation of aldehyde oxidases in Arabidopsis thaliana. Plant Cell Physiol 39:433–442

    CAS  PubMed  Google Scholar 

  • Seo M, Akaba S, Oritani T, Delarue M, Bellini C, Caboche M, Koshiba T (1998) Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol 116:687–693

    Article  CAS  PubMed  Google Scholar 

  • Sieberer T, Seifert GJ, Hauser MT, Grisafi P, Fink GR, Luschnig C (2000) Post-transcriptional control of the Arabidopsis auxin efflux carrier EIR1 requires AXR1. Curr Biol 10:1595–1598

    Article  CAS  PubMed  Google Scholar 

  • Szerszen JB, Szczyglowski K, Bandurski RS (1994) IAGLU, a gene from Zea-mays involved in conjugation of growth-hormone indole-3-acetic acid. Science 265:1699–1701

    CAS  PubMed  Google Scholar 

  • Sztein AE, Cohen JD, Cooke TJ (2000) Evolutionary patterns in the auxin metabolism of green plants. Int J Plant Sci 161:849–859

    Article  CAS  Google Scholar 

  • Ulmassov T, Hagen H, Guilfoyle TJ (1999) Activation and repression of transcription by auxin response factors. Proc Natl Acad Sci USA 96:5844–5849

    CAS  PubMed  Google Scholar 

  • Venis MA, Napier RM (1995) Auxin receptors and auxin-binding proteins. Crit Rev Plant Sci 14:27–47

    CAS  Google Scholar 

  • Vernoux T, Kronenberger J, Grandjean O, Laufs P, Traas J (2000) PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem. Development 127:5157–5165

    CAS  PubMed  Google Scholar 

  • Ward SP, Estelle M (2001) Auxin signalling involves regulated protein degradation by the ubiquitin-proteasome pathway. J Plant Growth Regul 20:265–273

    Article  CAS  Google Scholar 

  • Woo EJ, Marshall J, Bauly J, Chen JG, Venis M, Napier RM, Pickersgill RW (2002) Crystal structure of auxin-binding protein 1 in complex with auxin. EMBO J 21:2877–2885

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Christiansen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    Article  CAS  PubMed  Google Scholar 

  • Zenser N, Ellsmore A, Leasure C, Callis J (2001) Auxin modulates the degradation rate of Aux/IAA proteins. Proc Natl Acad Sci USA 98:11795–11800

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for funding to EU INCO Copernicus project No. ERBIC15 CT98 0118, to BBSRC (RN), and the Ministry of Education of the Czech Republic, project no.: LN00A081 (EZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Napier.

Additional information

Communicated by P.P. Kumar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zazimalova, E., Napier, R.M. Points of regulation for auxin action. Plant Cell Rep 21, 625–634 (2003). https://doi.org/10.1007/s00299-002-0562-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-002-0562-9

Keywords

Navigation