Skip to main content
Log in

Molecular characterization of the mitochondrial elongation factor EF-Tu gene in rice (Oryza sativa L.)

  • Genetics and Genomics
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract.

The mitochondrial elongation factor EF-Tu (tufM) in rice (Oryza sativa L.) was isolated and characterized. The rice tufM cDNA clone contained 1,726 nucleotides and coded for a 453 amino acid protein including a putative mitochondrial transit peptide of 64 amino acid residues. This coding region was composed of 12 exons and 11 introns. The deduced amino acid sequence showed 62% and 88% identities with rice chloroplast EF-Tu (tufA) and Arabidopsis mitochondrial EF-Tu, respectively. As previously observed for the rice tufA gene, the tufM gene is likely present as one copy in rice. The mitochondrial EF-Tu gene was differentially expressed during flower development, and the other translational EF-Tu genes (chloroplast EF-Tu and cytosolic EF-1 alpha) were also distinctly expressed in a temporal manner. Phylogenetic analysis of the rice tufM gene showed that the mitochondrial tufA homologue of Reclinomonas was more closely related to the mitochondrial tufM genes of flowering plants than fungal and other mitochondrial tuf genes. In addition, the tufM encoded an N-terminal extension showing significant similarity to that of rps14 (or sdhB), which is also a nuclear-encoded rice mitochondrial gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, .JH., Yoon, .HS., Yun, .CH. et al. Molecular characterization of the mitochondrial elongation factor EF-Tu gene in rice (Oryza sativa L.). Plant Cell Rep 21, 157–165 (2002). https://doi.org/10.1007/s00299-002-0469-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-002-0469-5

Navigation