Skip to main content

Advertisement

Log in

Progression of subclinical atherosclerosis in ankylosing spondylitis: a 10-year prospective study

  • Observational Research
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Chronic systemic inflammation contributes to increased CVD burden in Ankylosing Spondylitis (AS). Since long-term follow-up data on subclinical atherosclerosis acceleration are lacking, we examined its progression in contemporary AS patients during 10 years. Fifty-three (89% male, aged 50.4 (36.3–55.9) years,) non-diabetic, CVD-free AS patients and 53 age-sex-matched non-diabetic, control individuals were re-evaluated after 9.2–10.2 years by ultrasonography for carotid/femoral atheromatosis, pulse wave velocity (PWV) and intima-media thickness (IMT), performed by the same operator/protocol. New atheromatic plaque formation, PWV deterioration, and IMT increase were associated only with classical CVD risk factors, as reflected by the heartSCORE (age, gender, smoking status, blood pressure and cholesterol levels) by multivariate analysis, rather than disease presence. However, among AS patients, despite remission/low disease activity at follow-up end in 79%, atheromatosis progression was associated by multivariate analysis with higher BASDAI scores (p = 0.028), independently of biologic therapies administered in 2/3 of them. Moreover, in AS patients, but not in controls, PWV values at baseline were associated with plaque progression during the 10-year follow-up after taking into account baseline heartSCORE and plaque burden status (p = 0.033). Despite comparable prevalence of both hypertension and hypercholesterolemia at baseline between patients and controls, a lower percentage of AS patients had achieved “adequate” CVD risk factor control at follow-up end (11% vs 25% respectively, p = 0.076). Classical CVD risk factors and residual disease activity account for the progression of subclinical atherosclerosis in AS, pointing to the unmet needs in the contemporary management of these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author [AA].

References

  1. Arida A, Protogerou AD, Kitas GD, Sfikakis PP (2018) Systemic inflammatory response and atherosclerosis: the paradigm of chronic inflammatory rheumatic diseases. Int J Mol Sci. https://doi.org/10.3390/ijms19071890

    Article  PubMed  PubMed Central  Google Scholar 

  2. Drosos GC, Vedder D, Houben E et al (2022) EULAR recommendations for cardiovascular risk management in rheumatic and musculoskeletal diseases, including systemic lupus erythematosus and antiphospholipid syndrome. Ann Rheum Dis. https://doi.org/10.1136/ANNRHEUMDIS-2021-221733

    Article  PubMed  Google Scholar 

  3. Agca R, Heslinga SC, Rollefstad S et al (2017) EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann Rheum Dis 76:17–28. https://doi.org/10.1136/annrheumdis-2016-209775

    Article  CAS  PubMed  Google Scholar 

  4. Zhao SS, Robertson S, Reich T et al (2020) Prevalence and impact of comorbidities in axial spondyloarthritis: systematic review and meta-analysis. Rheumatology. https://doi.org/10.1093/rheumatology/keaa246

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hintenberger R, Affenzeller B, Vladychuk V, Pieringer H (2023) Cardiovascular risk in axial spondyloarthritis-a systematic review. Clin Rheumatol. https://doi.org/10.1007/S10067-023-06655-Z

    Article  PubMed  PubMed Central  Google Scholar 

  6. Atzeni F, Nucera V, Galloway J et al (2020) Cardiovascular risk in ankylosing spondylitis and the effect of anti-TNF drugs: a narrative review. Expert Opin Biol Ther 20:517–524. https://doi.org/10.1080/14712598.2020.1704727

    Article  CAS  PubMed  Google Scholar 

  7. Papagoras C, Markatseli TE, Saougou I et al (2014) Cardiovascular risk profile in patients with spondyloarthritis. Jt Bone Spine 81:57–63. https://doi.org/10.1016/j.jbspin.2013.03.019

    Article  CAS  Google Scholar 

  8. Rueda-Gotor J, Quevedo-Abeledo JC, Corrales A et al (2020) Reclassification into very-high cardiovascular risk after carotid ultrasound in patients with axial spondyloarthritis. Clin Exp Rheumatol 38:724–731. https://doi.org/10.1136/annrheumdis-2019-eular.3746

    Article  PubMed  Google Scholar 

  9. Arida A, Protogerou AD, Konstantonis G et al (2015) Subclinical atherosclerosis is not accelerated in patients with ankylosing spondylitis with low disease activity: new data and metaanalysis of published studies. J Rheumatol 42:2098–2105. https://doi.org/10.3899/jrheum.150316

    Article  CAS  PubMed  Google Scholar 

  10. Popa C, Netea MG, Van Riel PLCM et al (2007) The role of TNF-α in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res 48:751–762. https://doi.org/10.1194/JLR.R600021-JLR200

    Article  CAS  PubMed  Google Scholar 

  11. Solomon DH, Curtis JR, Saag KG et al (2013) Cardiovascular risk in rheumatoid arthritis: comparing TNF-α blockade with nonbiologic DMARDs. Am J Med 126:730.e9-730.e17. https://doi.org/10.1016/j.amjmed.2013.02.016

    Article  CAS  PubMed  Google Scholar 

  12. A. A, A.D. P, G. K, et al (2017) Atherosclerosis is not accelerated in rheumatoid arthritis of low activity or remission, regardless of antirheumatic treatment modalities. Rheumatology 56:934–939. https://doi.org/10.1093/rheumatology/kew506

    Article  CAS  Google Scholar 

  13. Gonzalez-Gay MA, Garcia-Unzueta MT, De Matias JM et al (2006) Influence of anti-TNF-alpha infliximab therapy on adhesion molecules associated with atherogenesis in patients with rheumatoid arthritis. Clin Exp Rheumatol 24:373–379

    CAS  PubMed  Google Scholar 

  14. Fragoulis GE, Soulaidopoulos S, Sfikakis PP et al (2021) Effect of biologics on cardiovascular inflammation: mechanistic insights and risk reduction. J Inflamm Res 14:1915. https://doi.org/10.2147/JIR.S282691

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bartels CM, Johnson H, Voelker K et al (2014) Impact of rheumatoid arthritis on receiving a diagnosis of hypertension among patients with regular primary care. Arthritis Care Res (Hoboken) 66:1281–1288. https://doi.org/10.1002/acr.22302

    Article  PubMed  Google Scholar 

  16. Protogerou AD, Panagiotakos DB, Zampeli E et al (2013) Arterial hypertension assessed "out-of-office" in a contemporary cohort of rheumatoid arthritis patients free of cardiovascular disease is characterized by high prevalence, low awareness, poor control and increased vascular damage-associated "white coat" phenomenon. Arthritis Res Ther 15:R142. https://doi.org/10.1186/ar4324

    Article  PubMed  PubMed Central  Google Scholar 

  17. Van Der LS, Valkenburg HA, Cats A (1984) Evaluation of diagnostic criteria for ankylosing spondylitis. a proposal for modification of the New York criteria. Arthritis Rheum 27:361–368. https://doi.org/10.1002/ART.1780270401

    Article  Google Scholar 

  18. Garrett S, Jenkinson T, Kennedy LG et al (1994) A new approach to defining disease status in ankylosing spondylitis: the Bath Ankylosing Spondylitis Disease Activity Index. J Rheumatol 21:2286–2291

    CAS  PubMed  Google Scholar 

  19. Calin A, Garrett S, Whitelock H et al (1994) A new approach to defining functional ability in ankylosing spondylitis: the development of the Bath Ankylosing Spondylitis Functional Index. J Rheumatol 21:2281–2285

    CAS  PubMed  Google Scholar 

  20. Visseren FLJ, Mach F, Smulders YM et al (2022) 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur J Prev Cardiol 29:5–115. https://doi.org/10.1093/EURJPC/ZWAB154

    Article  PubMed  Google Scholar 

  21. Protogerou AD, Fransen J, Zampeli E et al (2015) The additive value of femoral ultrasound for subclinical atherosclerosis assessment in a single center cohort of 962 adults, including high risk patients with rheumatoid arthritis, Human Immunodeficiency Virus infection and Type 2 Diabetes Mellitus. PLoS ONE. https://doi.org/10.1371/journal.pone.0132307

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stamatelopoulos KS, Kitas GD, Papamichael CM et al (2009) Atherosclerosis in rheumatoid arthritis versus diabetes: a comparative study. Arterioscler Thromb Vasc Biol 29:1702–1708. https://doi.org/10.1161/ATVBAHA.109.190108

    Article  CAS  PubMed  Google Scholar 

  23. Collaboration S working group and EC risk, Hageman S, Pennells L et al (2021) SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. Eur Heart J 42:2439–2454. https://doi.org/10.1093/EURHEARTJ/EHAB309

    Article  Google Scholar 

  24. van Sijl AM, van Eijk IC, Peters MJL et al (2015) Tumour necrosis factor blocking agents and progression of subclinical atherosclerosis in patients with ankylosing spondylitis. Ann Rheum Dis 74:119–123. https://doi.org/10.1136/annrheumdis-2013-203934

    Article  CAS  PubMed  Google Scholar 

  25. Terentes-Printzios D, Vlachopoulos C, Xaplanteris P et al (2017) Cardiovascular risk factors accelerate progression of vascular aging in the general population: results from the CRAVE study (cardiovascular risk factors affecting vascular age). Hypertens (Dallas, Tex 1979) 70:1057–1064. https://doi.org/10.1161/HYPERTENSIONAHA.117.09633

    Article  CAS  Google Scholar 

  26. Wu S, Su X, Zuo Y et al (2023) Discordance between remnant cholesterol and low-density lipoprotein cholesterol predicts arterial stiffness progression. Hellenic J Cardiol. https://doi.org/10.1016/J.HJC.2023.05.008

    Article  PubMed  Google Scholar 

  27. Tian X, Chen S, Wang P et al (2023) The impact of serum acid, arterial stiffness, and hypertension as a mediating factor: a cohort study. Hellenic J Cardiol. https://doi.org/10.1016/J.HJC.2023.07.009

    Article  PubMed  Google Scholar 

  28. Papazoglou N, Kravvariti E, Konstantonis G et al (2023) The impact of traditional cardiovascular risk factor control on 7-year follow-up atherosclerosis progression in systemic lupus erythematosus. Rheumatology (Oxford). https://doi.org/10.1093/RHEUMATOLOGY/KEAD184

    Article  Google Scholar 

  29. Baghdadi LR, Woodman RJ, Shanahan EM, Mangoni AA (2015) The impact of traditional cardiovascular risk factors on cardiovascular outcomes in patients with rheumatoid arthritis: a systematic review and meta-analysis. PLoS ONE 10:e0117952. https://doi.org/10.1371/journal.pone.0117952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mangione CM, Barry MJ, Nicholson WK et al (2022) Statin use for the primary prevention of cardiovascular disease in adults: US preventive services task force recommendation statement. JAMA 328:746–753. https://doi.org/10.1001/JAMA.2022.13044

    Article  PubMed  Google Scholar 

  31. Peters MJ, van der Horst-Bruinsma IE, Dijkmans BA, Nurmohamed MT (2004) Cardiovascular risk profile of patients with spondylarthropathies, particularly ankylosing spondylitis and psoriatic arthritis. Semin Arthritis Rheum 34:585–592

    Article  PubMed  Google Scholar 

  32. Mathieu S, Soubrier M (2018) Cardiovascular events in ankylosing spondylitis: a 2018 meta-analysis. Ann Rheum Dis Annrheumdis. https://doi.org/10.1136/annrheumdis-2018-213317

    Article  Google Scholar 

  33. Huang JX, Lee YH, Cheng-Chung Wei J (2022) Benefits of tumor necrosis factor inhibitors for cardiovascular disease in ankylosing spondylitis. Int Immunopharmacol 112:109207. https://doi.org/10.1016/J.INTIMP.2022.109207

    Article  CAS  PubMed  Google Scholar 

  34. Tam L-S, Kitas GD, Gonzalez-Gay MA (2014) Can suppression of inflammation by anti-TNF prevent progression of subclinical atherosclerosis in inflammatory arthritis? Rheumatology 53:1108–1119. https://doi.org/10.1093/rheumatology/ket454

    Article  CAS  PubMed  Google Scholar 

  35. Mathieu S, Pereira B, Couderc M et al (2013) No significant changes in arterial stiffness in patients with ankylosing spondylitis after tumour necrosis factor alpha blockade treatment for 6 and 12 months. Rheumatol (United Kingdom) 52:204–209. https://doi.org/10.1093/rheumatology/kes272

    Article  CAS  Google Scholar 

  36. Angel K, Provan SA, Gulseth HL et al (2010) Tumor necrosis factor-α antagonists improve aortic stiffness in patients with inflammatory Arthropathies. Hypertension 55:333–338. https://doi.org/10.1161/HYPERTENSIONAHA.109.143982

    Article  CAS  PubMed  Google Scholar 

  37. Végh E, Kerekes G, Pusztai A et al (2020) Effects of 1-year anti-TNF-α therapy on vascular function in rheumatoid arthritis and ankylosing spondylitis. Rheumatol Int 40:427–436. https://doi.org/10.1007/s00296-019-04497-0

    Article  CAS  PubMed  Google Scholar 

  38. Wilkinson IB, Fuchs SA, Jansen IM et al (1998) Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis. J Hypertens 16:2079–2084. https://doi.org/10.1097/00004872-199816121-00033

    Article  CAS  PubMed  Google Scholar 

  39. Vlachopoulos C, Aznaouridis K, Stefanadis C (2014) Aortic stiffness for cardiovascular risk prediction: just measure it, just do it! J Am Coll Cardiol 63:647–649. https://doi.org/10.1016/j.jacc.2013.10.040

    Article  PubMed  Google Scholar 

Download references

Funding

The research was supported by the Special Account for Research Grants (SARG) of the National and Kapodistrian University of Athens.

Author information

Authors and Affiliations

Authors

Contributions

All authors met the ICMJE 4 authorship criteria: AA, DTP, ADP, CV, MT AND PP contributed to the conception and design of the work, AA, GK, ADP, MT and PP contributed to the acquisition of the data, AA and GK to the analysis of the data and all authors contributed to the interpretation of the data. AA, GE, MT and PP contributed to the drafting of the work and all authors to reviewing it critically for important intellectual content. All authors gave final approval of the version to be published and all authors agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Finally, all authors take full responsibility for all aspects of the work.

Corresponding author

Correspondence to Aikaterini Arida.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest and the study was complied with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arida, A., Fragoulis, G.E., Terentes-Printzios, D. et al. Progression of subclinical atherosclerosis in ankylosing spondylitis: a 10-year prospective study. Rheumatol Int 44, 643–652 (2024). https://doi.org/10.1007/s00296-023-05528-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-023-05528-7

Keywords

Navigation