Skip to main content
Log in

Secondary consequences of juvenile idiopathic arthritis in children and adolescents with knee involvement: physical activity, adiposity, fitness, and functional performance

  • Observational Research
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Objective

Secondary consequences of juvenile idiopathic arthritis (JIA) may impact long-term health outcomes. This study examined differences in physical activity, cardiorespiratory fitness, adiposity, and functional performance in children and adolescents with JIA compared to their typically developing (TD) peers.

Methods

Participants with JIA (n = 32; 10–20 years old) and their TD peers (n = 35) volunteered for assessments of: daily moderate-to-vigorous physical activity (MVPA, body-worn accelerometer); peak oxygen consumption (VO2 Peak, incremental bike test); fat mass index (FMI, dual-energy X-ray absorptiometry); and triple-single-leg-hop (TSLH) distance. Statistical analyses were performed in R using four linear mixed-effect models with Bonferroni adjustment (⍺ = 0.0125). Fixed effects were group, sex, and age. Participant clusters based on sex and age (within 1.5 years) were considered as random effects.

Results

Participants with JIA displayed lower mean daily MVPA than their TD peers [p = 0.006; β (98.75% CI); −21.2 (−40.4 to −2.9) min]. VO2 Peak [p = 0.019; −1.4 (−2.5 to −0.2) ml/kg/min] decreased with age. Females tended to have lower VO2 Peak [p = 0.045; −6.4 (−13.0 to 0.4) ml/kg/min] and greater adiposity [p = 0.071; 1.4 (−0.1 to 3.0) kg/m2] than males.

Conclusion

The findings support the need for strategies to promote MVPA participation in children and adolescents with JIA. Sex and age should be considered in research on the consequences of JIA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saurenmann RK, Rose JB, Tyrrell P et al (2007) Epidemiology of juvenile idiopathic arthritis in a multiethnic cohort: ethnicity as a risk factor. Arthritis Rheum 56:1974–1984. https://doi.org/10.1002/art.22709

    Article  CAS  PubMed  Google Scholar 

  2. LeBlanc CMA, Lands LC (2014) Can I play? Pediatr Ann 43:e316–e324. https://doi.org/10.3928/00904481-20141124-11

    Article  PubMed  Google Scholar 

  3. Bohr A-H, Nielsen S, Müller K et al (2015) Reduced physical activity in children and adolescents with Juvenile Idiopathic Arthritis despite satisfactory control of inflammation. Pediatr Rheumatol 13:57. https://doi.org/10.1186/s12969-015-0053-5

    Article  Google Scholar 

  4. Cavallo S, Majnemer A, Mazer B et al (2015) Participation in leisure activities among Canadian children with arthritis: results from a National Representative Sample. J Rheumatol 42:1002–1010. https://doi.org/10.3899/jrheum.131377

    Article  PubMed  Google Scholar 

  5. Nørgaard M, Herlin T (2011) Sport and exercise habits in children with juvenile idiopathic arthritis (JIA). Pediatr Rheumatol 9:P126. https://doi.org/10.1186/1546-0096-9-S1-P126

    Article  Google Scholar 

  6. Hinze C, Gohar F, Foell D (2015) Management of juvenile idiopathic arthritis: hitting the target. Nat Rev Rheumatol 11:290–300. https://doi.org/10.1038/nrrheum.2014.212

    Article  CAS  PubMed  Google Scholar 

  7. van Pelt PA, Takken T, van Brussel M et al (2012) Aerobic capacity and disease activity in children, adolescents and young adults with juvenile idiopathic arthritis (JIA). Pediatr Rheumatol 10:27. https://doi.org/10.1186/1546-0096-10-27

    Article  Google Scholar 

  8. Takken T, van der Net J, Kuis W, Helders PJM (2003) Physical activity and health related physical fitness in children with juvenile idiopathic arthritis. Ann Rheum Dis 62:885–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grönlund M-M, Kaartoaho M, Putto-Laurila A, Laitinen K (2014) Juvenile idiopathic arthritis patients with low inflammatory activity have increased adiposity. Scand J Rheumatol 43:488–492. https://doi.org/10.3109/03009742.2014.918171

    Article  PubMed  Google Scholar 

  10. Caetano MC, Sarni ROS, Terreri MTL et al (2012) Excess of adiposity in female children and adolescents with juvenile idiopathic arthritis. Clin Rheumatol 31:967–971. https://doi.org/10.1007/s10067-012-1947-y

    Article  PubMed  Google Scholar 

  11. Schenck S, Niewerth M, Sengler C et al (2015) Prevalence of overweight in children and adolescents with juvenile idiopathic arthritis. Scand J Rheumatol 44:288–295. https://doi.org/10.3109/03009742.2014.999351

    Article  CAS  PubMed  Google Scholar 

  12. Risum K, Edvardsen E, Godang K et al (2019) Physical fitness in patients with oligoarticular and polyarticular Juvenile idiopathic arthritis diagnosed in the era of biologics: a Controlled Cross-Sectional Study. Arthritis Care Res 71:1611–1620. https://doi.org/10.1002/acr.23818

    Article  CAS  Google Scholar 

  13. Guzman J, Oen K, Tucker LB et al (2015) The outcomes of juvenile idiopathic arthritis in children managed with contemporary treatments: results from the ReACCh-Out cohort. Ann Rheum Dis 74:1854–1860. https://doi.org/10.1136/annrheumdis-2014-205372

    Article  CAS  PubMed  Google Scholar 

  14. Milatz F, Klotsche J, Niewerth M et al (2019) Participation in school sports among children and adolescents with juvenile idiopathic arthritis in the German National Paediatric Rheumatologic Database, 2000–2015: results from a prospective observational cohort study. Pediatr Rheumatol 17:6. https://doi.org/10.1186/s12969-019-0306-9

    Article  Google Scholar 

  15. Emery CA, Meeuwisse WH (2010) The effectiveness of a neuromuscular prevention strategy to reduce injuries in youth soccer: a cluster-randomised controlled trial. Br J Sports Med 44:555–562. https://doi.org/10.1136/bjsm.2010.074377

    Article  CAS  PubMed  Google Scholar 

  16. Kuntze G, Nesbitt C, Nettel-Aguirre A et al (2019) Gait adaptations in youth with juvenile idiopathic arthritis. Arthritis Care Res 72:917–924. https://doi.org/10.1002/acr.23919

    Article  Google Scholar 

  17. Houghton KM, Guzman J (2013) Evaluation of static and dynamic postural balance in children with juvenile idiopathic arthritis. Pediatr Phys Ther 25:150–157. https://doi.org/10.1097/PEP.0b013e31828a2978

    Article  PubMed  Google Scholar 

  18. Kuntze G, Nettel-Aguirre A, Brooks J et al (2020) Vertical drop jump performance in youth with juvenile idiopathic arthritis. Arthritis Care Res. https://doi.org/10.1002/acr.24219

    Article  Google Scholar 

  19. van der Harst JJ, Gokeler A, Hof AL (2007) Leg kinematics and kinetics in landing from a single-leg hop for distance. A comparison between dominant and non-dominant leg. Clin Biomech 22:674–680. https://doi.org/10.1016/j.clinbiomech.2007.02.007

    Article  Google Scholar 

  20. Lelieveld OTHM, Armbrust W, van Leeuwen MA et al (2008) Physical activity in adolescents with juvenile idiopathic arthritis. Arthritis Rheum 59:1379–1384. https://doi.org/10.1002/art.24102

    Article  PubMed  Google Scholar 

  21. Faul F, Erdfelder E, Buchner A, Lang A (2009) Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods 41:1149–1160

    Article  PubMed  Google Scholar 

  22. Petty RE, Southwood TR, Manners P et al (2004) International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 31:390–392

    PubMed  Google Scholar 

  23. Consolaro A, Ruperto N, Bazso A et al (2009) Development and validation of a composite disease activity score for juvenile idiopathic arthritis. Arthritis Rheum 61:658–666. https://doi.org/10.1002/art.24516

    Article  PubMed  Google Scholar 

  24. Andersson Gäre B, Ruperto N, Berg S et al (2001) The Swedish version of the Childhood Health Assessment Questionnaire (CHAQ) and the Child Health Questionnaire (CHQ). Clin Exp Rheumatol 19:S146–S150

    PubMed  Google Scholar 

  25. Fitzgerald GK, Axe MJ, Snyder-Mackler L (2000) A decision-making scheme for returning patients to high-level activity with nonoperative treatment after anterior cruciate ligament rupture. Knee Surg Sports Traumatol Arthrosc 8:76–82. https://doi.org/10.1007/s001670050190

    Article  CAS  PubMed  Google Scholar 

  26. Reid A, Birmingham TB, Stratford PW et al (2007) Hop testing provides a reliable and valid outcome measure during rehabilitation after anterior cruciate ligament reconstruction. Phys Ther 87:337–349. https://doi.org/10.2522/ptj.20060143

    Article  PubMed  Google Scholar 

  27. Fitzgerald G, Lephart S, Hwang J, Wainner M (2011) Hop tests as predictors of dynamic knee stability. J Orthop Sport Phys Ther 31:588–597

    Article  Google Scholar 

  28. Moksnes H, Risberg MA (2009) Performance-based functional evaluation of non-operative and operative treatment after anterior cruciate ligament injury. Scand J Med Sci Sports 19:345–355. https://doi.org/10.1111/j.1600-0838.2008.00816.x

    Article  CAS  PubMed  Google Scholar 

  29. Martin JC, Spirduso WW (2001) Determinants of maximal cycling power: crank length, pedaling rate and pedal speed. Eur J Appl Physiol 84:413–418. https://doi.org/10.1007/s004210100400

    Article  CAS  PubMed  Google Scholar 

  30. Guidetti L, Meucci M, Bolletta F et al (2018) Validity, reliability and minimum detectable change of COSMED K5 portable gas exchange system in breath-by-breath mode. PLoS ONE 13:e0209925. https://doi.org/10.1371/journal.pone.0209925

    Article  PubMed  PubMed Central  Google Scholar 

  31. Marinov B, Mandadjieva S, Kostianev S (2008) Pictorial and verbal category-ratio scales for effort estimation in children. Child Care Health Dev 34:35–43. https://doi.org/10.1111/j.1365-2214.2007.00767.x

    Article  CAS  PubMed  Google Scholar 

  32. Froelicher VF, Myers J (2006) Ventilatory Gas Exchange. In: Exercise and the Heart (5th edition). Elsevier, pp 41–61

  33. White L, Volfson Z, Faulkner G, Arbour-Nicitopoulos K (2016) Reliability and validity of physical activity instruments used in children and youth with physical disabilities: a systematic review. Pediatr Exerc Sci 28:240–263. https://doi.org/10.1123/pes.2015-0123

    Article  PubMed  Google Scholar 

  34. Choi L, Liu Z, Matthews CE, Buchowski MS (2011) Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc 43:357–364. https://doi.org/10.1249/MSS.0b013e3181ed61a3

    Article  PubMed  PubMed Central  Google Scholar 

  35. Trost SG, Loprinzi PD, Moore R, Pfeiffer KA (2011) Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc 43:1360–1368. https://doi.org/10.1249/MSS.0b013e318206476e

    Article  PubMed  Google Scholar 

  36. Evenson KR, Catellier DJ, Gill K et al (2008) Calibration of two objective measures of physical activity for children. J Sports Sci 26:1557–1565. https://doi.org/10.1080/02640410802334196

    Article  PubMed  Google Scholar 

  37. Tremblay MS, Carson V, Chaput J-P et al (2016) Canadian 24-hour movement guidelines for children and youth: an integration of physical activity, sedentary behaviour, and sleep. NRC Research Press

    Google Scholar 

  38. Ridley K, Ainsworth BE, Olds TS (2008) Development of a compendium of energy expenditures for youth. Int J Behav Nutr Phys Act 5:45. https://doi.org/10.1186/1479-5868-5-45

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hangartner TN, Warner S, Braillon P et al (2013) The Official Positions of the International Society for Clinical Densitometry: acquisition of dual-energy X-ray absorptiometry body composition and considerations regarding analysis and repeatability of measures. J Clin Densitom 16:520–536. https://doi.org/10.1016/j.jocd.2013.08.007

    Article  PubMed  Google Scholar 

  40. Sopher AB, Thornton JC, Wang J et al (2004) Measurement of percentage of body fat in 411 children and adolescents: a comparison of dual-energy X-ray absorptiometry with a four-compartment model. Pediatrics 113:1285–1290. https://doi.org/10.1542/peds.113.5.1285

    Article  PubMed  Google Scholar 

  41. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  42. Nørgaard M, Twilt M, Andersen LB, Herlin T (2016) Accelerometry-based monitoring of daily physical activity in children with juvenile idiopathic arthritis. Scand J Rheumatol 45:179–187. https://doi.org/10.3109/03009742.2015.1057862

    Article  CAS  PubMed  Google Scholar 

  43. Cavallo S, April KT, Grandpierre V et al (2014) Leisure in children and adolescents with juvenile idiopathic arthritis: a systematic review. PLoS ONE 9:e104642. https://doi.org/10.1371/journal.pone.0104642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ekelund U, Luan J, Sherar LB et al (2012) Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA 307:704. https://doi.org/10.1001/jama.2012.156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sims-Gould J, Race DL, Macdonald H et al (2018) “I just want to get better”: experiences of children and youth with juvenile idiopathic arthritis in a home-based exercise intervention. Pediatr Rheumatol 16:59. https://doi.org/10.1186/s12969-018-0273-6

    Article  Google Scholar 

  46. Chomistek K, Johnson N, Stevenson R et al (2019) Patient-reported barriers at school for children with juvenile idiopathic arthritis. ACR Open Rheumatol 1:182–187. https://doi.org/10.1002/acr2.1023

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tupper S (2008) The paradox of physical activity and pain for children with juvenile idiopathic arthritis. Pediatric Pain Letter 10(1):7–12.

  48. Eisenmann JC, Laurson KR, Welk GJ (2011) Aerobic fitness percentiles for U.S. adolescents. Am J Prev Med 41:S106. https://doi.org/10.1016/j.amepre.2011.07.005

    Article  PubMed  Google Scholar 

  49. Kelly TL, Wilson KE, Heymsfield SB (2009) Dual energy X-ray absorptiometry body composition reference values from NHANES. PLoS ONE 4:e7038. https://doi.org/10.1371/journal.pone.0007038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Merker J, Hartmann M, Kreuzpointner F et al (2017) Excellent balance skills despite active and inactive juvenile idiopathic arthritis - unexpected results of a cross-sectional study. Clin Exp Rheumatol 35:161–168

    PubMed  Google Scholar 

  51. Kuntze G, Nettel-Aguirre A, Brooks J et al (2020) Consequences of juvenile idiopathic arthritis on single leg squat performance in youth. Arthritis Care Res. https://doi.org/10.1002/acr.24254

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the participants and their families as well as all the clinicians at the Alberta Children’s Hospital and Richmond Road Clinic for their support.

Funding

This project was supported by the Vi Riddell Pediatric Rehabilitation Research Program, the Cumming School of Medicine, and Alberta Health Services. Additional support was received by the Alberta Children’s Hospital Foundation and Alberta Innovates Technology Futures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Kuntze.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesbitt, C., Kuntze, G., Toomey, C. et al. Secondary consequences of juvenile idiopathic arthritis in children and adolescents with knee involvement: physical activity, adiposity, fitness, and functional performance. Rheumatol Int 42, 319–327 (2022). https://doi.org/10.1007/s00296-021-04920-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-021-04920-5

Keywords

Navigation