Skip to main content

Advertisement

Log in

The relationship between defects in DNA repair genes and autoinflammatory diseases

  • Review
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Tissue inflammation and damage with the abnormal and overactivation of innate immune system results with the development of a hereditary disease group of autoinflammatory diseases. Multiple numbers of DNA damage develop with the continuous exposure to endogenous and exogenous genotoxic effects, and these damages are repaired through the DNA damage response governed by the genes involved in the DNA repair mechanisms, and proteins of these genes. Studies showed that DNA damage might trigger the innate immune response through nuclear DNA accumulation in the cytoplasm, and through chronic DNA damage response which signals itself and/or by micronucleus. The aim of the present review is to identify the effect of mutation that occurred in DNA repair genes on development of DNA damage response and autoinflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McDermott MF, Aksentijevich I, Galon J, McDermott EM, Ogunkolade BW, Centola M, Mansfield E, Gadina M, Karenko L, Pettersson T, McCarthy J, Frucht DM, Aringer M, Torosyan Y, Teppo AM, Wilson M, Karaarslan HM, Wan Y, Todd I, Wood G, Schlimgen R, Kumarajeewa TR, Cooper SM, Vella JP, Amos CI, Mulley J, Quane KA, Molloy MG, Ranki A, Powell RJ, Hitman GA, O’Shea JJ, Kastner DL (1999) Germ line mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97:133–144. https://doi.org/10.1016/s0092-8674(00)80721-7

    Article  CAS  PubMed  Google Scholar 

  2. Zen M, Gatto M, Domeneghetti M, Palma L, Borella E, Iaccarino L, Punzi L, Doria A (2013) Clinical guidelines and definitions of autoinflammatory diseases: contrasts and comparisons with autoimmunity—a comprehensive review. Clin Rev Allergy Immunol 45(2):227–235. https://doi.org/10.1007/s12016-013-8355-1

    Article  CAS  PubMed  Google Scholar 

  3. Brydges S, Kastner DL (2006) The systemic autoinflammatory diseases: inborn errors of the innate immune system. Curr Top Microbiol Immunol 305:127–160. https://doi.org/10.1007/3-540-29714-6_7

    Article  CAS  PubMed  Google Scholar 

  4. Wang L, Manji GA, Grenier JM, Al-Garawi A, Merriam S, Lora JM, Geddes BJ, Briskin M, DiStefano PS, Bertin J (2002) PYPAF7, a novel PYRIN containing Apaf1-like protein that regulates activation of NF-κB and caspase-1-dependent cytokine processing. J Biol Chem 277(33):29874–29880. https://doi.org/10.1074/jbc.M203915200

    Article  CAS  PubMed  Google Scholar 

  5. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2:417–426. https://doi.org/10.1016/s1097-2765(02)00599-3

    Article  Google Scholar 

  6. Sharma D, Kanneganti T-D (2006) The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation. J Cell Biol 213(6):617–629. https://doi.org/10.1083/jcb.201602089

    Article  CAS  Google Scholar 

  7. Man SM, Karki R, Kanneganti TD (2017) Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev 277(1):61–75. https://doi.org/10.1111/imr.12534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Man SM, Kanneganti TD (2015) Regulation of inflammasome activation. Immunol Rev 265(1):6–21. https://doi.org/10.1111/imr.12296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hwang I, Yang J, Hong S, Lee JE, Lee SH, Alnemri TF, Alnemri ES, WookYu J (2015) Non-transcriptional regulation of NLRP3 inflammasome signaling by IL-4. Immunol Cell Biol 93(6):591–599. https://doi.org/10.1038/icb.2014.125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kesavardhana S, Kanneganti TD (2017) Mechanisms governing inflammasome activation, assembly and pyroptosis induction. Int Immunol 29(5):201–210. https://doi.org/10.1093/intimm/dxx018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G (2013) K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38(6):1142–1153. https://doi.org/10.1016/j.immuni.2013.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Georgin-Lavialle S, Fayand A, Rodrigues F, Bachmeyer C, Savey L, Grateau G (2019) Autoinflammatory diseases: state of the art. Presse Med 48(1):e25–e48. https://doi.org/10.1016/j.lpm.2018.12.003 (Pt 2)

    Article  PubMed  Google Scholar 

  13. Malireddi RK, Ippagunta S, Lamkanfi M, Kanneganti TD (2010) Cutting edge: proteolytic inactivation of poly (ADP-ribose) polymerase 1 by the Nlrp3 and Nlrc4 inflammasomes. J Immunol 185:3127–3130

    Article  CAS  PubMed  Google Scholar 

  14. Erener S, Petrilli V, Kassner I, Minotti R, Castillo R, Santoro R, HassaTschopp POJ, Hottigeret MO (2012) Inflammasome-activated caspase 7 cleaves PARP1 to enhance the expression of a subset of NF-kappa B target genes. Mol Cell 46:200–211

    Article  CAS  PubMed  Google Scholar 

  15. Licandro G, Khor HL, Beretta O, Lai J, Derks H, Laudisi F, Conforti-Andreoni C, Qian HL, Teng GG, Ricciardi-Castagnoli P, Mortellaro A (2013) The NLRP3 inflammasome affects DNA damage responses after oxidative and genotoxic stress in dendritic cells. Eur J Immunol 43(8):2126–2137. https://doi.org/10.1002/eji.201242918

    Article  CAS  PubMed  Google Scholar 

  16. de Jesus AA, Scott W, Yin LC, Goldbach-Mansky R (2015) Molecular mechanisms in genetically defined autoinflammatory diseases: disorders of amplified danger signaling. Annu Rev Immunol 33:823–874. https://doi.org/10.1146/annurev-immunol-032414-112227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49(11):1603–1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cadet J, Wagner JR (2013) DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biol 5(2):a012559. https://doi.org/10.1101/cshperspect.a012559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Velimezi G, Liontos M, Vougas K, Roumeliotis T, Bartkova J, Sideridou M, Dereli-Oz A, Kocylowski M, Pateras IS, Evangelou K, Kotsinas A, Orsolic I, Bursac S, Cokaric-Brdovcak M, Zoumpourlis V, Kletsas D, Papafotiou G, Klinakis A, Volarevic S, Gu W, Bartek J, Halazonetis TD, Gorgoulis VG (2013) Functional inter play between the DNA-damage-response kinase ATM and ARF tumour suppressor protein in human cancer. Nat Cell Biol 15(8):967–977. https://doi.org/10.1038/ncb2795

    Article  CAS  PubMed  Google Scholar 

  20. Mari GG, Zotter A, Vermeulen W (2011) DNA damage response. Cold Spring Harb Perspect Biol 3(1):a000745. https://doi.org/10.1101/cshperspect.a000745

    Article  CAS  Google Scholar 

  21. Jeggo PA, Pearl LH, Carr AM (2016) DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer 16(1):35–42. https://doi.org/10.1038/nrc.2015.4

    Article  CAS  PubMed  Google Scholar 

  22. De Cauwer A, Mariotte A, Sibilia J, Bahram S, Georgel P (2018) DICER1: a key player in rheumatoid arthritis, at the crossroads of cellular stress, ınnate ımmunity, and chronic ınflammation in aging. Front Immunol 9:1647. https://doi.org/10.3389/fimmu.2018.01647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Christmann M, Tomicic MT, Roos WP, Kaina B (2013) Mechanisms of human DNA repair: an update. Toxicology 193(1–2):3–34. https://doi.org/10.1016/s0300-483x(03)00287-7

    Article  Google Scholar 

  24. Sancar A, Lindsey-Boltz LA, Kaçmaz KU, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85. https://doi.org/10.1146/annurev.biochem.73.011303.073723

    Article  CAS  PubMed  Google Scholar 

  25. Jin B, Robertson KD (2013) DNA methyltransferases, DNA damage repair, and cancer. Adv Exp Med Biol 754:3–29. https://doi.org/10.1007/978-1-4419-9967-2_1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grombacher T, Mitra S, Kaina B (1996) Induction of the alkyltransferase (MGMT) gene by DNA damaging agents and the glucocorticoid dexamethasone and comparison with the response of base excision repair genes. Carcinogenesis 17(11):2329–2336. https://doi.org/10.1093/carcin/17.11.2329

    Article  CAS  PubMed  Google Scholar 

  27. Wani HA, Majid S, Bhat AA, Amin S, Farooq R, Bhat SA, Naikoo NA, Beigh MA, Kadla SA (2019) Impact of catechol-O-methyltransferase gene variants on methylation status of P16 and MGMT genes and their downregulation in colorectal cancer. Eur J Cancer Prev 28(2):68–75. https://doi.org/10.1097/CEJ.0000000000000485

    Article  CAS  PubMed  Google Scholar 

  28. Martínez-Ramírez OC, Pérez-Morales R, Castro-Hernández C, Gonsebatt ME, Casas-Ávila L, Valdés-Flores M, Petrosyan P, de León-Suárez VP, Rubio J (2019) Association of the promoter methylation and the rs12917 polymorphism of MGMT with formation of DNA bulky adducts and the risk of lung cancer in Mexican Mestizo population. DNA Cell Biol 38(4):307–313. https://doi.org/10.1089/dna.2018.4526

    Article  CAS  PubMed  Google Scholar 

  29. Robertson AB, Klungland A, Rognes T, Leiros I (2009) DNA repair in mammalian cells: base excision repair: the long and short of it. Cell Mol Life Sci 66(6):981–993. https://doi.org/10.1007/s00018-009-8736-z

    Article  CAS  PubMed  Google Scholar 

  30. Sliwinska A, Kwiatkowski D, Czarny P, Toma M, Wigner P, Drzewoski J, Fabianowska-Majewska K, Szemraj J, Maes M, Galecki P, Sliwinski T (2016) The levels of 7,8-dihydrodeoxyguanosine (8-oxoG) and 8-oxoguanine DNA glycosylase 1 (OGG1)—a potential diagnostic biomarkers of Alzheimer’s disease. J Neurol Sci 368:155–159. https://doi.org/10.1016/j.jns.2016.07.008

    Article  CAS  PubMed  Google Scholar 

  31. Ba X, Aguilera-Aguirre L, Rashid QT, Bacsi A, Radak Z, Sur S, Hosoki K, Hegde ML, Boldogh I (2014) The role of 8-oxoguanine DNA glycosylase-1 in inflammation. Int J Mol Sci 15(9):16975–16997. https://doi.org/10.3390/ijms150916975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marín M, Ramírez MJ, Carmona MA, Jia N, Ogi T, Bogliolo M, Surrales J (2019) Functional comparison of XPF missense mutations associated to multiple DNA repair disorders. Genes (Basel) 10(1):60. https://doi.org/10.3390/genes10010060

    Article  CAS  PubMed Central  Google Scholar 

  33. Li Z, Pearlman AH, Hsieh P (2016) DNA mismatch repair and the DNA damage response. DNA Repair (Amst) 38:94–101. https://doi.org/10.1016/j.dnarep.2015.11.019

    Article  CAS  Google Scholar 

  34. Schmidt MHM, Pearson CE (2016) Disease-associated repeat instability and mismatch repair. DNA Repair (Amst) 38:117–126. https://doi.org/10.1016/j.dnarep.2015.11.008

    Article  CAS  Google Scholar 

  35. D’Amours D, Desnoyers S, D’Silva I, Poirier GG (1999) Poly (ADP-ribosyl) ation reactions in the regulation of nuclear functions. Biochem J 342:249–268 (Pt 2 PMC1220459)

    Article  PubMed  PubMed Central  Google Scholar 

  36. Caldecott KW (2003) XRCC1 and DNA strand break repair. DNA Repair (Amst) 2(9):955–969. https://doi.org/10.1016/s1568-7864(03)00118-6

    Article  CAS  Google Scholar 

  37. Yoon G, Caldecott KW (2018) Nonsyndromic cerebellar ataxias associated with disorders of DNA single-strand break repair. Handb Clin Neurol 155:105–115. https://doi.org/10.1016/B978-0-444-64189-2.00007-X

    Article  PubMed  Google Scholar 

  38. Madabhushi R, Pan L, Tsai LH (2014) DNA damage and its links to neurodegeneration. Neuron 83(2):266–282. https://doi.org/10.1016/j.neuron.2014.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kowalczykowski SC (2015) An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb Perspect Biol 7(11):a016410. https://doi.org/10.1101/cshperspect.a016410

    Article  PubMed  PubMed Central  Google Scholar 

  40. McKinnon PJ, Caldecott KW (2007) DNA strand break repair and human genetic disease. Annu Rev Genomics Hum Genet 8:37–55. https://doi.org/10.1146/annurev.genom.7.080505.115648

    Article  CAS  PubMed  Google Scholar 

  41. West SC (2003) Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol 4(6):435–445. https://doi.org/10.1038/nrm1127

    Article  CAS  PubMed  Google Scholar 

  42. Chang HHY, Pannunzio NR, Adachi N, Lieber MR (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18(8):495–506. https://doi.org/10.1038/nrm.2017.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435. https://doi.org/10.1038/nature07201

    Article  CAS  PubMed  Google Scholar 

  44. Newton K, Dixit VM (2012) Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 4(3):a006049. https://doi.org/10.1101/cshperspect.a006049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cao X (2016) Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol 16(1):35–50. https://doi.org/10.1038/nri.2015.8

    Article  CAS  PubMed  Google Scholar 

  46. Roers A, Hiller B, Hornung V (2016) Recognition of endogenous nucleic acids by the ınnate ımmune system. Immunity 44(4):739–754. https://doi.org/10.1016/j.immuni.2016.04.002

    Article  CAS  PubMed  Google Scholar 

  47. Gasser S, Raulet DH (2006) The DNA damage response arouses the immune system. Cancer Res 66(8):3959–3962. https://doi.org/10.1158/0008-5472.CAN-05-4603

    Article  CAS  PubMed  Google Scholar 

  48. Li T, Chen ZJ (2018) The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J Exp Med 215(5):1287–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ (2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339(6121):826–830. https://doi.org/10.1126/science.1229963

    Article  CAS  PubMed  Google Scholar 

  50. Barber GN (2011) STING-dependent signaling. Nat Immunol 12(10):929–930. https://doi.org/10.1038/ni.2118

    Article  CAS  PubMed  Google Scholar 

  51. Dobbs N, Burnaevskiy N, Chen D, Gonugunta VK, Alto NM, Yan N (2015) STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe 18(2):157–168. https://doi.org/10.1016/j.chom.2015.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Oda H, Kastner DL (2017) Genomics, biology, and human illness: advances in the monogenic autoinflammatory diseases. Rheum Dis Clin North Am 43(3):327–345. https://doi.org/10.1016/j.rdc.2017.04.011

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gao D, Wu J, Wu Y-T, Du F, Aroh C, Yan N, Sun L, Chen ZJ (2013) Cyclic GMP–AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341(6148):903–906. https://doi.org/10.1126/science.1240933

    Article  CAS  PubMed  Google Scholar 

  54. Motwani M, Fitzgerald KA (2017) cGAS micro-manages genotoxic stress. Immunity 47(4):616–617. https://doi.org/10.1016/j.immuni.2017.09.020

    Article  CAS  PubMed  Google Scholar 

  55. Rongvaux A (2018) Innate immunity and tolerance toward mitochondria. Mitochondrion 41:14–20. https://doi.org/10.1016/j.mito.2017.10.007

    Article  CAS  PubMed  Google Scholar 

  56. Yan N (2017) Immune diseases associated with TREX1 and STING dysfunction. J Interferon Cytokine Res 37(5):198–206. https://doi.org/10.1089/jir.2016.0086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Sanchez GAM, Tenbrock K, Wittkowski H, Jones OY, Kuehn HS, Lee CCR, DiMattia MA, Cowen EW, Gonzalez B, Palmer I, DiGiovanna JJ, Biancotto A, Kim H, Tsai WL, Trier AM, Huang Y, Stone DL, Hill S, Kim HJ, St Hilaire C, Gurprasad S, Plass N, Chapelle D, Horkayne-Szakaly I, Foell D, Barysenka A, Candotti F, Holland SM, Hughes JD, Mehmet H, Issekutz AC, Raffeld M, McElwee J, Fontana JR, Minniti CP, Moir S, Kastner DL, Gadina M, Steven AC, Wingfield PT, Brooks SR, Rosenzweig SD, Fleisher TA, Deng Z, Boehm M, Paller AS, Goldbach-Mansky R (2014) Activated STING in a vascular and pulmonary syndrome. N Engl J Med 371(6):507–518. https://doi.org/10.1056/NEJMoa1312625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Crow YJ, Casanova J-L (2014) STING-associated vasculopathy with onset in infancy—a new interferonopathy. N Engl J Med 371(6):568–571. https://doi.org/10.1056/NEJMe1407246

    Article  PubMed  Google Scholar 

  59. Edmonds MJ, Carter RJ, Nickson CM, Williams SC, Parsons JL (2017) Ubiquitylation-dependent regulation of NEIL1 by mule and TRIM26 is required for the cellular DNA damage response. Nucleic Acids Res 45(2):726–738. https://doi.org/10.1093/nar/gkw959

    Article  CAS  PubMed  Google Scholar 

  60. Ognenovski M, Renauer P, Gensterblum E, Kötter I, Xenitidis T, Henes JC, Casali B, Salvarani C, Direskeneli H, Kaufman KM, Sawalha AH (2016) Whole exome sequencing identifies rare protein-coding variants in Behçet’s disease. Arthritis Rheumatol 68(5):1272–1280. https://doi.org/10.1002/art.39545

    Article  CAS  PubMed  Google Scholar 

  61. deSilva U, Choudhury S, Bailey SL, Harvey S, Perrino FW, Hollis T (2007) The crystal structure of TREX1 explains the 3’ nucleotide specificity and reveals a polyproline II helixfor protein partnering. J Biol Chem 282(14):10537–10543. https://doi.org/10.1074/jbc.M700039200

    Article  CAS  Google Scholar 

  62. Yang YG, Lindahl T, Barnes DE (2007) Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131(5):873–886. https://doi.org/10.1016/j.cell.2007.10.017

    Article  CAS  PubMed  Google Scholar 

  63. Stetson DB, Ko JS, Heidmann T, Medzhitov R (2008) Trex1 prevents cell-intrinsicinitiation of autoimmunity. Cell 134(4):587–598. https://doi.org/10.1016/j.cell.2008.06.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chowdhury D, Beresford PJ, Zhu P, Zhang D, Sung JS, Demple B, Perrino FW, Lieberman J (2006) The exonuclease TREX1 is in the SET complex and acts in concert with NM23-H1 to degrade DNA during granzyme A-mediated cell death. Mol Cell 23(1):133–142. https://doi.org/10.1016/j.molcel.2006.06.005

    Article  CAS  PubMed  Google Scholar 

  65. Miyazaki T, Kim YS, Yoon J, Wang H, Suzuki T, Morse HC (2014) The 3’-5’ DNA exonuclease TREX1 directly ınteracts with poly (ADP-ribose) polymerase-1 (PARP1) during the DNA damage response. J Biol Chem 289(47):32548–32558. https://doi.org/10.1074/jbc.M114.547331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hyjek M, Figiel M, Nowotny M (2019) RNases H: structure and mechanism. DNA Repair (Amst) 84:102672. https://doi.org/10.1016/j.dnarep.2019.102672

    Article  CAS  Google Scholar 

  67. Livingston JH, Crow YJ (2016) Neurologic phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, and IFIH1: Aicardi–Goutières syndrome and beyond. Neuropediatrics 47(6):355–360. https://doi.org/10.1055/s-0036-1592307

    Article  CAS  PubMed  Google Scholar 

  68. Maehigashi T, Kim DH, Schinazi RF, Kim B (2018) SAMHD1-mediated negative regulation of cellular dNTP levels: HIV-1, ınnate ımmunity, and cancers. In: Fernandez-Lucas J (ed) Enzymatic and chemical synthesis of nucleic acid derivatives, chapter 12, pp 313–325

  69. White TE, Brandariz-Nunez A, Martinez-Lopez A, Knowlton C, Lenzi G, Kim B, Ivanov D, Diaz-Griffero F (2017) A SAMHD1 mutation associated with Aicardi–Goutieres syndrome uncouples the ability of SAMHD1 to restrict HIV-1 from its ability to downmodulate type I interferon in humans. Hum Mutat 38(6):658–668. https://doi.org/10.1002/humu.23201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Crow YJ (2015) Type I interferonopathies: Mendelian type I interferon up-regulation. Curr Opin Immunol 32:7–12. https://doi.org/10.1016/j.coi.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  71. Ravenscroft JC, Suri M, Rice GI, Szynkiewicz M, Crow YJ (2011) Autosomal dominant inheritance of a heterozygous mutation in SAMHD1 causing familial chilblain lupus. Am J Med Genet A 155A(1):235–237. https://doi.org/10.1002/ajmg.a.33778

    Article  PubMed  Google Scholar 

  72. Schneider WM, Chevillotte MD, Rice CM (2014) Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 32:513–545. https://doi.org/10.1146/annurev-immunol-032713-120231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liddicoat BJ, Piskol R, Chalk AM, Ramaswami G, Higuchi M, Hartner JC, Li JB, Seeburg PH, Walkley CR (2015) RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349(6252):1115–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rice GI, Kasher PR, Forte GM, Mannion NM, Greenwood SM, Szynkiewicz M, Dickerson JE, Bhaskar SS, Zampini M, Briggs TA, Jenkinson EM, Bacino CA, Battini R, Bertini E, Brogan PA, Brueton LA, Carpanelli M, De Laet C, de Lonlay P, del Toro M, Desguerre I, Fazzi E, Garcia-Cazorla A, Heiberg A, Kawaguchi M, Kumar R, Lin JPSM, Lourenco CM, MaleJrMignot AMWMC, Olivieri I, Orcesi S, Prabhakar P, Rasmussen M, Robinson RA, Rozenberg F, Schmidt JL, Steindl K, Tan TY, van der Merwe WG, Vanderver A, Vassallo G, Wakeling EL, Wassmer E, Whittaker E, Livingston JH, Lebon P, Suzuki T, McLaughlin PJ, Keegan LP, O’Connell MA, Lovell SC, Crow YJ (2012) Mutations in ADAR1 cause Aicardi–Goutières syndrome associated with a type I interferon signature. Nat Genet 44(11):1243–1248. https://doi.org/10.1038/ng.2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rice GI, Del Toro DY, Jenkinson EM, Forte GM, Anderson BH, Ariaudo G, Bader-Meunier B, Baildam EM, Battini R, Beresford MW, Casarano M, Chouchane M, Cimaz R, Collins AE, Jv Cordeiro N, Dale RC, Davidson JE, De Waele L, Desguerre I, Faivre L, Fazzi E, Isidor B, Lagae L, Latchman AR, Lebon P, Li C, Livingston JH, Lourenço CM, Mancardi MM, Masurel-Paulet A, McInnes IB, Menezes MP, Mignot C, O’Sullivan J, Orcesi S, Picco SP, Riva E, Robinson RA, Rodriguez D, Salvatici E, Scott C, Szybowska M, Tolmie JL, Vanderver A, Vanhulle C, Vieira JP, Webb K, Whitney RN, Williams SG, Wolfe LA, Zuberi SM, Hur S, Crow YJ (2014) Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet 46(5):503–509. https://doi.org/10.1038/ng.2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. König N, Fiehn C, Wolf C, Schuster M, Costa EC, Tüngler V, Alvarez HA, Chara O, Engel K, Goldbach-Mansky R, Günther C, Lee-Kirsch MA (2017) Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis 76(2):468–472. https://doi.org/10.1136/annrheumdis-2016-209841

    Article  CAS  PubMed  Google Scholar 

  77. Lanzi G, Fazzi E, D’Arrigo S, Orcesi S, Maraucci I, Uggetti C, Bertini E, Lebon P (2005) Thenaturalhistory of Aicardi–Goutie`ressyndrome: follow-up of 11 Italian patients. Neurology 64(9):1621–1624 (Goutie`res F. Aicardi-Goutie`ressyndrome. Brain Dev 27(3):201–06)

    Article  CAS  PubMed  Google Scholar 

  78. Davidson S, Steiner A, Harapas CR, Masters SL (2018) An update on autoinflammatory diseases: interferonopathies. Curr Rheumatol Reports 20(7):38. https://doi.org/10.1007/s11926-018-0748-y

    Article  CAS  Google Scholar 

  79. Guo J, Hanawalt PC, Spivak G (2013) Comet-FISH with strand-specific probes reveals transcription-coupled repair of 8-oxoguanine in human cells. Nucleic Acids Res 41(16):7700–7712. https://doi.org/10.1093/nar/gkt524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bochkarev A, Bochkareva E (2004) From RPA to BRCA2: lessons from single-stranded DNA binding by the OB-fold. Curr Opin Struct Biol 14(1):36–42. https://doi.org/10.1016/j.sbi.2004.01.001

    Article  CAS  PubMed  Google Scholar 

  81. Mine J, Disseau L, Takahashi M, Cappello G, Dutreix M, Louis-Viovy J (2007) Real-time measurements of the nucleation, growth and dissociation of single Rad51-DNA nucleoprotein filaments. Nucleic Acids Res 35(21):7171–7187. https://doi.org/10.1093/nar/gkm752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wolf C, Rapp A, Berndt N, Staroske W, Schuster M, Dobrick-Mattheuer M, Kretschmer S, König N, Kurth T, Wieczorek D, Kast K, Cardoso MC, Günther C, Lee-Kirsch MA (2016) RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA. Nat Commun 2016(7):11752. https://doi.org/10.1038/ncomms11752

    Article  CAS  Google Scholar 

  83. Morita M, Stamp G, Robins P, Dulic A, Rosewell I, Hrivnak G, Daly G, Lindahl T, Barnes DE (2004) Gene-targeted mice lacking the Trex1 (DNase III) 3’–>5’ DNA exonuclease develop inflammatory myocarditis. Mol Cell Biol 24(15):6719–6727. https://doi.org/10.1128/MCB.24.15.6719-6727.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Crow YJ, Hayward BE, Parmar R, Robins P, Leitch A, Ali M, Black DN, van Bokhoven H, Brunner HG, Hamel BC, Corry PC, Cowan FM, Frints SG, Klepper J, Livingston JH, Lynch SA, Massey RF, Meritet JF, Michaud JL, Ponsot G, Voit T, Lebon P, Bonthron DT, Jackson AP, Barnes DE, Lindahl T (2006) Mutations in the gene encoding the 3’-5’ DNA exonuclease TREX1 cause Aicardi–Goutières syndrome at the AGS1 locus. Nat Genet 38(8):917–920. https://doi.org/10.1038/ng1845

    Article  CAS  PubMed  Google Scholar 

  85. Rice GI, Rodero MP, Crow YJ (2015) Human disease phenotypes associated with mutations in TREX1. J Clin Immunol 35(3):235–243. https://doi.org/10.1007/s10875-015-0147-3

    Article  CAS  PubMed  Google Scholar 

  86. Picard C, Thouvenin G, Kannengiesser C, Dubus JC, Jeremiah N, Rieux-Laucat F, Crestani B, Belot A, Thivolet-Béjui F, Secq V, Ménard C, Reynaud-Gaubert M, Reix P (2016) Severe pulmonary fibrosis as the first manifestation of interferonopathy (TMEM173 mutation). Chest 150(3):e65-71. https://doi.org/10.1016/j.chest.2016.02.682

    Article  PubMed  Google Scholar 

  87. Jeremiah N, Neven B, Gentili M, Callebaut I, Maschalidi S, Stolzenberg MC, Goudin N, Frémond ML, Nitschke P, Molina TJ, Blanche S, Picard C, Rice GI, Crow YJ, Manel N, Fischer A, Bader-Meunier B, Rieux-Laucat F (2014) Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J Clin Invest 124(12):5516–5520. https://doi.org/10.1172/JCI79100

    Article  PubMed  PubMed Central  Google Scholar 

  88. Dhir A, Dhir S, Borowski LS, Jimenez L, Teitell M, Rotig A, Crow YJ, Rice GI, Duffy D, Tamby C, Nojima T, Munnich A, Schiff M, de Almeida CR, Rehwinkel J, Dziembowski A, Szczesny RJ, Proudfoot NJ (2018) Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature 560(7717):238–242. https://doi.org/10.1038/s41586-018-0363-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pajak A, Laine I, Clemente P, El-Fissi N, Schober FA, Maffezzini C, Calvo-Garrido J, Wibom R, Filograna R, Dhir A, Wedell A, Freyer C, Wredenberg A (2019) Defects of mitochondrial RNA turnover lead to the accumulation of double-stranded RNA in vivo. PLoS Genet 15(7):e1008240. https://doi.org/10.1371/journal.pgen.1008240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Harapas CR, Steiner A, Davidson S, Masters SL (2018) An update on autoinflammatory diseases: ınflammasomopathies. Curr Rheumatol Reports 20(7):40. https://doi.org/10.1007/s11926-018-0750-4

    Article  CAS  Google Scholar 

  91. Bamborschke D, Kreutzer M, Koy A, Koerber F, Lucas N, Huenseler C, Herkenrath P, Lee-Kirsch MA, Cirak S (2020) PNPT1 mutations may cause Aicardi–Goutie’res-syndrome. Brain Dev S0387–7604(20):30283–30287. https://doi.org/10.1016/j.braindev.2020.10.005

    Article  Google Scholar 

  92. Daddacha W, Koyen AE, Bastien AJ, Head PE, Dhere VR, Nabeta GN, Connolly EC, Werner E, Madden MZ, Daly MB, Minten EV, Whelan DR, Schlafstein AJ, Zhang H, Anand R, Doronio C, Withers AE, Shepard C, Sundaram RK, Deng X, Dynan WS, Wang Y, Bindra RS, Cejka P, Rothenberg E, Doetsch PW, Kim B, Yu DS (2017) SSAMHD1 promotes DNA end resection to facilitate DNA repair by homologous recombination. Cell Rep 20(8):1921–1935. https://doi.org/10.1016/j.celrep.2017.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Beloglazova N, Flick R, Tchigvintsev A, Brown G, Popovic A, Nocek B, Yakunin AF (2013) Nuclease activity of the human SAMHD1 protein implicated in the Aicardi–Goutieres syndrome and HIV-1 restriction. J Biol Chem 288(12):8101–8110. https://doi.org/10.1074/jbc.M112.431148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Franzolin E, Coletta S, Ferraro P, Pontarin G, D’Aronco G, Stevanoni M, Palumbo E, Cagnin S, Bertoldi L, Feltrin E, Valle G, Russo A, Bianchi V, Rampazzo C (2020) SAMHD1-deficient fibroblasts from Aicardi–Goutières syndrome patients can escape senescence and accumulate mutations. FASEB J 34(1):631–647. https://doi.org/10.1096/fj.201902508R

    Article  CAS  PubMed  Google Scholar 

  95. Amari S, Tsukamoto K, Ishiguro A, Yanagi K, Kaname T, Ito Y (2019) An extremely severe case of Aicardi–Goutières syndrome 7 with a novel variant in IFIH1. Eur J Med Genet 63(2):103646. https://doi.org/10.1016/j.ejmg.2019.04.003

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The idea of the article belongs to SD. Literature search was performed by DK. Data analysis was performed by DK and SD. The first draft of the manuscript was written by DK, critically revised the work by SD.

Corresponding author

Correspondence to Selcuk Dasdemir.

Ethics declarations

Conflict of interest

The authors of this paper have no conflicts of interest.

Disclaimer

No part of this review, including figures, is copied or published elsewhere in whole or in part.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kivanc, D., Dasdemir, S. The relationship between defects in DNA repair genes and autoinflammatory diseases. Rheumatol Int 42, 1–13 (2022). https://doi.org/10.1007/s00296-021-04906-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-021-04906-3

Keywords

Navigation