Skip to main content

Advertisement

Log in

Does smoking affect level of seropositivity in RA? A post-HOC global and inter-country analysis of COMORA cohort

  • Cohort Studies
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

To study the association of smoking status and the level of seropositivity in RA patients from COMORA Cohort. A post hoc analysis of COMORA database included 3439 RA patients was performed. Current smokers or recently quitted (< 3 years) were initially compared to those who never smoked or stopped > 3 years (Group I vs. II) regarding their seropositivity status (high positive, low positive and negative) for Rheumatoid Factor (RF) or Anti-citrullinated antibodies (ACPA). A further comparison was made between current smokers (Group III) and never smoked patients (Group IV). Analysis was also done on the individual country level for the 17 countries included in the COMORA study. Out of 3439 RA patients, 705 (20.5%) were smokers (group I), and 2734 (79.5%) were non-smokers (group II). Significantly more patients in group I, 442 (62.7%), had high levels of seropositivity than those in group II, 1556 (56.9%), [P = 0.006, OR 1.27 (95% CI, 1.07–1.5)]. More current smoker patients (group III—286 out of 456 “62.7%”) had high levels of seropositivity than never smoked patients (group IV—1236 out of 2191 “56.4%”), with significant difference [P = 0.013, OR 1.3 (95% CI, 1.06–1.6)]. In 11 countries, higher proportions of patients with high level of seropositivity in group I was found, with statistical significance in four countries. Smoking was associated with higher level of seropositivity in patients with RA in this post hoc analysis, both on a global level and in certain individual countries. As smoking is a modifiable risk factor, studying the effects of quitting smoking on level of seropositivity and other disease parameters is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baka Z, Buzás E, Nagy G (2009) Rheumatoid arthritis and smoking: putting the pieces together. Arthritis Res Ther 11(4):238

    Article  Google Scholar 

  2. Hammam N, Gheita TA (2017) Impact of secondhand smoking on disease activity in women with rheumatoid arthritis. Clin Rheumatol 36(11):2415–2420

    Article  Google Scholar 

  3. Pedersen M, Jacobsen S, Klarlund M, Pedersen BV, Wiik A, Wohlfahrt J, Frisch M (2006) Environmental risk factors differ between rheumatoid arthritis with and without auto-antibodies against cyclic citrullinated peptides. Arthritis Res Ther 8(4):R133

    Article  Google Scholar 

  4. Stolt P, Bengtsson C, Nordmark B, Lindblad S, Lundberg I, Klareskog L, Alfredsson L (2003) Quantification of the influence of cigarette smoking on rheumatoid arthritis: results from a population-based case-control study, using incident cases. Ann Rheum Dis 62(9):835–841

    Article  CAS  Google Scholar 

  5. Kazantseva MG, Highton J, Stamp LK, Hessian PA (2012) Dendritic cells provide a potential link between smoking and inflammation in rheumatoid arthritis. Arthritis Res Ther 14(5):R208

    Article  CAS  Google Scholar 

  6. Jónsson T, Thorsteinsson J, Valdimarsson H (1998) Does smoking stimulate rheumatoid factor production in non-rheumatic individuals? APMIS 106(10):970–974

    Article  Google Scholar 

  7. Papadopoulos NG, Alamanos Y, Voulgari PV, Epagelis EK, Tsifetaki N, Drosos AA (2005) Does cigarette smoking influence disease expression, activity and severity in early rheumatoid arthritis patients? Clin Exp Rheumatol 23(6):861–866

    CAS  PubMed  Google Scholar 

  8. Westhoff G, Rau R, Zink A (2008) Rheumatoid arthritis patients who smoke have a higher need for DMARDs and feel worse, but they do not have more joint damage than non-smokers of the same serological group. Rheumatology (Oxford) 47(6):849–854

    Article  CAS  Google Scholar 

  9. Harrison BJ, Silman AJ, Wiles NJ, Scott DG, Symmons DP (2001) The association of cigarette smoking with disease outcome in patients with early inflammatory polyarthritis. Arthritis Rheum 44(2):323–330

    Article  CAS  Google Scholar 

  10. Wolfe F (2000) The effect of smoking on clinical, laboratory, and radiographic status in rheumatoid arthritis. J Rheumatol 27(3):630–637

    CAS  PubMed  Google Scholar 

  11. Joseph RM, Movahedi M, Dixon WG, Symmons DP (2016) Smoking-related mortality in patients with early rheumatoid arthritis: a retrospective cohort study using the clinical practice research datalink. Arthritis Care Res (Hoboken) 68(11):1598–1606

    Article  Google Scholar 

  12. Lahiri M, Morgan C, Symmons DP, Bruce IN (2012) Modifiable risk factors for RA: prevention, better than cure? Rheumatology (Oxford) 51(3):499–512

    Article  CAS  Google Scholar 

  13. Källberg H, Ding B, Padyukov L, Bengtsson C, Rönnelid J, Klareskog L, Alfredsson L; EIRA Study Group (2011) Smoking is a major preventable risk factor for rheumatoid arthritis: estimations of risks after various exposures to cigarette smoke. Ann Rheum Dis 70(3):508–511

    Article  Google Scholar 

  14. Sugiyama D, Nishimura K, Tamaki K, Tsuji G, Nakazawa T, Morinobu A, Kumagai S (2010) Impact of smoking as a risk factor for developing rheumatoid arthritis: a meta-analysis of observational studies. Ann Rheum Dis 69(1):70–81

    Article  CAS  Google Scholar 

  15. Masdottir B, Jónsson T, Manfredsdottir V, Víkingsson A, Brekkan A, Valdimarsson H (2000) Smoking, rheumatoid factor isotypes and severity of rheumatoid arthritis. Rheumatology (Oxford) 39(11):1202–1205

    Article  CAS  Google Scholar 

  16. Van Venrooij WJ, Pruijn GJ (2014) How citrullination invaded rheumatoid arthritis. Arthritis Res Ther 16(1):103

    Article  Google Scholar 

  17. Lundberg K, Bengtsson C, Kharlamova N, Reed E, Jiang X, Kallberg H et al (2013) Genetic and environmental determinants for disease risk in subsets of rheumatoid arthritis is defined by the anticitrullinated protein/peptide antibody fine specificity profile. Ann Rheum Dis 72(5):652–658

    Article  CAS  Google Scholar 

  18. Klareskog L, Stolt P, Lundberg K, Källberg H, Bengtsson C, Grunewald J et al (2006) A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum 54(1):38–46

    Article  CAS  Google Scholar 

  19. Lee DM, Phillips R, Hagan EM, Chibnik LB, Md CKH, Mph SPH (2009) Quantifying Anti-CCP titer: clinical utility and association with tobacco exposure in patients with rheumatoid arthritis. Ann Rheum Dis 68(2):201–208

    Article  CAS  Google Scholar 

  20. Dougados M, Soubrier M, Antunez A, Balint P, Balsa A, Buch MH et al (2014) Prevalence of comorbidities in rheumatoid arthritis and evaluation of their monitoring: results of an international, cross-sectional study (COMORA). Ann Rheum Dis 73(1):62–68

    Article  Google Scholar 

  21. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd et al (2010) Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 62(9):2569–2581

    Article  Google Scholar 

  22. Mjaavatten MD, van der Heijde D, Uhlig T, Haugen AJ, Nygaard H, Sidenvall G et al (2010) The likelihood of persistent arthritis increases with the level of anti-citrullinated peptide antibody and immunoglobulin M rheumatoid factor: a longitudinal study of 376 patients with very early undifferentiated arthritis. Arthritis Res Ther 12(3):R76

    Article  Google Scholar 

  23. Chou C, Liao H, Chen Ch, Chen W, Wang H, Su K (2007) The clinical application of anti-CCP in rheumatoid arthritis and other rheumatic diseases. Biomark Insights 2:165–171

    Article  Google Scholar 

  24. Verpoort KN, Papendrecht-van der Voort EA, van der Helm-van MAH, Jol-van der Zijde CM, van Tol MJ, Drijfhout JW et al (2007) Association of smoking with the constitution of the anti-cyclic citrullinated peptide response in the absence of HLA-DRB1 shared epitope alleles. Arthritis Rheum 56(9):2913–2918

    Article  CAS  Google Scholar 

  25. Makrygiannakis D, Hermansson M, Ulfgren AK, Nicholas AP, Zendman AJ, Eklund A et al (2008) Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. Ann Rheum Dis 67(10):1488–1492

    Article  CAS  Google Scholar 

  26. Damgaard D, Friberg Bruun Nielsen M, Quisgaard Gaunsbaek M, Palarasah Y, Svane-Knudsen V, Nielsen CH (2015) Smoking is associated with increased levels of extracellular peptidyl arginine deiminase 2 (PAD2) in the lungs. Clin Exp Rheumatol 33(3):405–408

    PubMed  Google Scholar 

  27. Pedersen M, Jacobsen S, Garred P, Madsen HO, Klarlund M, Svejgaard A et al (2007) Strong combined gene-environment effects in anti-cyclic citrullinated peptide-positive rheumatoid arthritis: a nationwide case-control study in Denmark. Arthritis Rheum 56(5):1446–1453

    Article  Google Scholar 

  28. Pedersen M, Jacobsen S, Klarlund M, Pedersen BV, Wiik A, Wohlfahrt J et al (2006) Environmental risk factors differ between rheumatoid arthritis with and without auto-antibodies against cyclic citrullinated peptides. Arthritis Res Ther 8(4):R133

    Article  Google Scholar 

  29. Firestein GS, Schur PH, Romain PL (2019) Pathogenesis of rheumatoid arthritis. In Up To Date. Literature review current through

  30. Saag KG, Cerhan JR, Kolluri S, Ohashi K, Hunninghake GW, Schwartz DA (1997) Cigarette smoking and rheumatoid arthritis severity. Ann Rheum Dis 56(8):463–469

    Article  CAS  Google Scholar 

  31. Carlens C, Hergens MP, Grunewald J, Ekbom A, Eklund A, Höglund CO et al (2010) Smoking, use of moist snuff, and risk of chronic inflammatory diseases. Am J Respir Crit Care Med 181(11):1217–1222

    Article  Google Scholar 

  32. Lee HS, Irigoyen P, Kern M, Lee A, Batliwalla F, Khalili H et al (2007) Interaction between smoking, the shared epitope, and anti-cyclic citrullinated peptide: a mixed picture in three large North American rheumatoid arthritis cohorts. Arthritis Rheum 56(6):1745–1753

    Article  CAS  Google Scholar 

  33. Criswell LA, Merlino LA, Cerhan JR, Mikuls TR, Mudano AS, Burma M et al (2002) Cigarette smoking and the risk of rheumatoid arthritis among postmenopausal women: results from the Iowa Women’s Health Study. Am J Med 112(6):465–471

    Article  Google Scholar 

  34. Padyukov L, Silva C, Stolt P, Alfredsson L, Klareskog L (2004) A gene-environment interaction between smoking and shared epitope genes in HLA-DR provides a high risk of seropositive rheumatoid arthritis. Arthritis Rheum 50(10):3085–3092

    Article  CAS  Google Scholar 

  35. Linn-Rasker SP, van der Helm-van Mil AH, van Gaalen FA, Kloppenburg M, de Vries RR, le Cessie S et al (2006) Smoking is a risk factor for anti-CCP antibodies only in rheumatoid arthritis patients who carry HLA-DRB1 shared epitope alleles. Ann Rheum Dis 65(3):366–371

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all patients and investigators who participated in the COMORA study and all co-authors of the original COMORA manuscript.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif M. Gamal.

Ethics declarations

Conflict of interest

Authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elzorkany, B., Mokbel, A., Gamal, S.M. et al. Does smoking affect level of seropositivity in RA? A post-HOC global and inter-country analysis of COMORA cohort. Rheumatol Int 41, 699–705 (2021). https://doi.org/10.1007/s00296-021-04791-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-021-04791-w

Keywords

Navigation