Skip to main content

Advertisement

Log in

A study of antigen-specific anti-cytomegalovirus antibody reactivity in patients with systemic sclerosis and concomitant anti-Ro52 antibodies

  • Biomarkers
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Anti-Ro52 autoantibody (autoAb), highly prevalent in Sjogren’s syndrome (SjS) and systemic lupus erythematosus (SLE), is also frequent in systemic sclerosis (SSc). Viral agents, such as human cytomegalovirus (HCMV), have been considered as a trigger for SSc and SSc-associated autoAbs. To seek for antigen-specific anti-HCMV associations with anti-Ro52, we assessed the dominant anti-HCMV ab responses in anti-Ro52 antibody (ab)-positive and -negative patients with SSc and compared them with those in SLE and SjS. 116 Anti-HCMV ab(+) sera were analyzed, including 70 from anti-Ro52(+) patients (29 SSc, 23 SLE and 18 SjS) and 46 from anti-Ro52(−) patients (29 with SSc, 9 with SLE and 8 with SjS) as negative controls. Abs against specific HCMV pp130/UL57, pp65/UL83, pp55/UL55, pp52/UL44, p38 and pp28/UL99 antigens were tested by immunoblotting. Anti-Ro52(+) SSc patients reacted more frequently against pp52/UL44 and p38 compared to anti-Ro52(−) [(13/29, 44.8%; 95% CI 26.7–62.9% vs. 1/29, 3.4%; 95% CI 0–10%, p < 0.001, and 9/29, 31.0%; 95% CI 14.2–47.8% vs. 2/29, 6.9%; 95% CI 0–16.1%, p = 0.041, respectively]. No such differences were noted between anti-Ro52(+) and anti-Ro52(−) SLE or SjS patients. Also, antibody titres against HCMV pp65/UL83, pp52/UL44 and p38 antigens were higher in anti-Ro52(+) than anti-Ro52(−) SSc patients (p < 0.01). Ab responses against specific HCMV antigens differ among anti-Ro52 ab-positive and -negative patients with SSc (as well as between SSc and SLE or SjS), but whether these differences are epiphenomenal remains to be seen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ab:

Antibody

autoAb:

Autoantibody

CEN:

Centromere

dcSSc:

Diffuse cutaneous systemic sclerosis

lcSSc:

Limited cutaneous systemic sclerosis

RNA pol III:

RNA polymerase III

Scl-70:

Scleroderma 70

SSc:

Systemic sclerosis

References

  1. Denton CP, Khanna D (2017) Systemic sclerosis. Lancet (London, England) 390(10103):1685–1699. https://doi.org/10.1016/s0140-6736(17)30933-9

    Article  Google Scholar 

  2. Stochmal A, Czuwara J, Trojanowska M, Rudnicka L (2019) Antinuclear antibodies in systemic sclerosis: an update. Clin Rev Allergy Immunol. https://doi.org/10.1007/s12016-018-8718-8

    Article  Google Scholar 

  3. Sakkas LI, Bogdanos DP (2016) Systemic sclerosis: new evidence re-enforces the role of B cells. Autoimmun Rev 15(2):155–161. https://doi.org/10.1016/j.autrev.2015.10.005

    Article  CAS  PubMed  Google Scholar 

  4. Nihtyanova SI, Denton CP (2010) Autoantibodies as predictive tools in systemic sclerosis. Nat Rev Rheumatol 6(2):112–116. https://doi.org/10.1038/nrrheum.2009.238

    Article  CAS  PubMed  Google Scholar 

  5. Baroni SS, Santillo M, Bevilacqua F, Luchetti M, Spadoni T, Mancini M, Fraticelli P, Sambo P, Funaro A, Kazlauskas A, Avvedimento EV, Gabrielli A (2006) Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N Engl J Med 354(25):2667–2676. https://doi.org/10.1056/NEJMoa052955

    Article  CAS  PubMed  Google Scholar 

  6. Koenig M, Dieude M, Senecal JL (2008) Predictive value of antinuclear autoantibodies: the lessons of the systemic sclerosis autoantibodies. Autoimmun Rev 7(8):588–593. https://doi.org/10.1016/j.autrev.2008.06.010

    Article  CAS  PubMed  Google Scholar 

  7. Liaskos C, Marou E, Simopoulou T, Barmakoudi M, Efthymiou G, Scheper T, Meyer W, Bogdanos DP, Sakkas LI (2017) Disease-related autoantibody profile in patients with systemic sclerosis. Autoimmunity 50(7):414–421. https://doi.org/10.1080/08916934.2017.1357699

    Article  CAS  PubMed  Google Scholar 

  8. Alonso-Larruga A, Bustabad S, Navarro-Gonzalvez JA, Rodriguez-Lozano B, Franco A, Barrios Y (2017) Isolated Ro52 antibodies as immunological marker of a mild phenotype of undifferentiated connective tissue diseases. Int J Rheumatol 2017:3076017. https://doi.org/10.1155/2017/3076017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wodkowski M, Hudson M, Proudman S, Walker J, Stevens W, Nikpour M, Assassi S, Mayes MD, Wang M, Baron M, Fritzler MJ (2015) Monospecific anti-Ro52/TRIM21 antibodies in a tri-nation cohort of 1574 systemic sclerosis subjects: evidence of an association with interstitial lung disease and worse survival. Clin Exp Rheumatol 33(4 Suppl 91):S131–135

    PubMed  Google Scholar 

  10. Hudson M, Pope J, Mahler M, Tatibouet S, Steele R, Baron M, Fritzler MJ (2012) Clinical significance of antibodies to Ro52/TRIM21 in systemic sclerosis. Arthritis Res Ther 14(2):R50. https://doi.org/10.1186/ar3763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghillani P, Andre C, Toly C, Rouquette AM, Bengoufa D, Nicaise P, Goulvestre C, Gleizes A, Dragon-Durey MA, Alyanakian MA, Chretien P, Chollet-Martin S, Musset L, Weill B, Johanet C (2011) Clinical significance of anti-Ro52 (TRIM21) antibodies non-associated with anti-SSA 60 kDa antibodies: results of a multicentric study. Autoimmun Rev 10(9):509–513. https://doi.org/10.1016/j.autrev.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  12. Fujimoto M, Shimozuma M, Yazawa N, Kubo M, Ihn H, Sato S, Tamaki T, Kikuchi K, Tamaki K (1997) Prevalence and clinical relevance of 52-kDa and 60-kDa Ro/SS-A autoantibodies in Japanese patients with systemic sclerosis. Ann Rheum Dis 56(11):667–670

    Article  CAS  Google Scholar 

  13. Liaskos C, Marou E, Simopoulou T, Gkoutzourelas A, Barmakoudi M, Efthymiou G, Scheper T, Meyer W, Katsiari C, Bogdanos DP, Sakkas L (2018) Multiparametric autoantibody profiling of patients with systemic sclerosis in Greece. Mediterr J Rheumatol 29(3):120–126

    Article  Google Scholar 

  14. Gkoutzourelas A, Liaskos C, Mytilinaiou MG, Simopoulou T, Katsiari C, Tsirogianni A, Daoussis D, Scheper T, Meyer W, Bogdanos DP, Sakkas LI (2018) Anti-Ro60 seropositivity determines anti-Ro52 epitope mapping in patients with systemic sclerosis. Front Immunol 9:2835. https://doi.org/10.3389/fimmu.2018.02835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Neidhart M, Kuchen S, Distler O, Bruhlmann P, Michel BA, Gay RE, Gay S (1999) Increased serum levels of antibodies against human cytomegalovirus and prevalence of autoantibodies in systemic sclerosis. Arthritis Rheum 42(2):389–392. https://doi.org/10.1002/1529-0131(199902)42:2<389:aid-anr23>3.0.co;2-p

    Article  CAS  PubMed  Google Scholar 

  16. Arnson Y, Amital H, Guiducci S, Matucci-Cerinic M, Valentini G, Barzilai O, Maya R, Shoenfeld Y (2009) The role of infections in the immunopathogenesis of systemic sclerosis—evidence from serological studies. Ann N Y Acad Sci 1173:627–632. https://doi.org/10.1111/j.1749-6632.2009.04808.x

    Article  CAS  PubMed  Google Scholar 

  17. Vaughan JH, Shaw PX, Nguyen MD, Medsger TA Jr, Wright TM, Metcalf JS, Leroy EC (2000) Evidence of activation of 2 herpesviruses, Epstein-Barr virus and cytomegalovirus, in systemic sclerosis and normal skins. J Rheumatol 27(3):821–823

    CAS  PubMed  Google Scholar 

  18. Halenius A, Hengel H (2014) Human cytomegalovirus and autoimmune disease. Biomed Res Int. https://doi.org/10.1155/2014/472978

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sakkas LI, Bogdanos DP (2016) Infections as a cause of autoimmune rheumatic diseases. Autoimmun Highlights 7(1):13. https://doi.org/10.1007/s13317-016-0086-x

    Article  CAS  Google Scholar 

  20. Muryoi T, Kasturi KN, Kafina MJ, Cram DS, Harrison LC, Sasaki T, Bona CA (1992) Antitopoisomerase I monoclonal autoantibodies from scleroderma patients and tight skin mouse interact with similar epitopes. J Exp Med 175(4):1103–1109. https://doi.org/10.1084/jem.175.4.1103

    Article  CAS  PubMed  Google Scholar 

  21. Zhu J (1996) Ultraviolet B irradiation and cytomegalovirus infection synergize to induce the cell surface expression of 52-kD/Ro antigen. Clin Exp Immunol 103(1):47–53

    Article  CAS  Google Scholar 

  22. Zhu J (1995) Cytomegalovirus infection induces expression of 60 kD/Ro antigen on human keratinocytes. Lupus 4(5):396–406. https://doi.org/10.1177/096120339500400511

    Article  CAS  PubMed  Google Scholar 

  23. Agmon-Levin N, Dagan A, Peri Y, Anaya JM, Selmi C, Tincani A, Bizzaro N, Stojanovich L, Damoiseaux J, Cohen Tervaert JW, Mosca M, Cervera R, Shoenfeld Y (2017) The interaction between anti-Ro/SSA and anti-La/SSB autoantibodies and anti-infectious antibodies in a wide spectrum of auto-immune diseases: another angle of the autoimmune mosaic. Clin Exp Rheumatol 35(6):929–935

    PubMed  Google Scholar 

  24. Efthymiou G, Dardiotis E, Liaskos C, Marou E, Scheper T, Meyer W, Daponte A, Daoussis D, Hadjigeorgiou G, Bogdanos DP, Sakkas LI (2019) A comprehensive analysis of antigen-specific antibody responses against human cytomegalovirus in patients with systemic sclerosis. Clin Immunol 207:87–96. https://doi.org/10.1016/j.clim.2019.07.012

    Article  CAS  PubMed  Google Scholar 

  25. van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, Matucci-Cerinic M, Naden R, Riemekasten G, Carreira P, Gabrielli A, Distler O, van Laar JM, Valentini G, Denton CP, Kowal-Bielecka O, Inanc M, Allanore Y, Walker UA, Müller-Ladner U, Vonk M, Czirjak L, Herrick A, Sierakowski S, Veale D, Chung L, Clements P, Fessler BJ, Furst D, Guiducci S, Hsu V, Mayes M, Medsger TA, Merkel P, Silver R, Steen V, Varga J, Collier D, Csuka ME, Jimenez S, Kahaleh B, Seibold JR, Simms R, Pope J (2013) Classification criteria for systemic sclerosis: an ACR-EULAR collaborative initiative. Arthritis Rheum 65(11):2737–2747. https://doi.org/10.1002/art.38098

    Article  PubMed  PubMed Central  Google Scholar 

  26. Petri M, Orbai A-M, Alarcón GS, Gordon C, Merrill JT, Fortin PR, Bruce IN, Isenberg D, Wallace DJ, Nived O, Sturfelt G, Ramsey-Goldman R, Bae S-C, Hanly JG, Sanchez-Guerrero J, Clarke A, Aranow C, Manzi S, Urowitz M, Gladman D, Kalunian K, Costner M, Werth VP, Zoma A, Bernatsky S, Ruiz-Irastorza G, Khamashta MA, Jacobsen S, Buyon JP, Maddison P, Dooley MA, van Vollenhoven RF, Ginzler E, Stoll T, Peschken C, Jorizzo JL, Callen JP, Lim SS, Fessler BJ, Inanc M, Kamen DL, Rahman A, Steinsson K, Franks AG, Sigler L, Hameed S, Fang H, Pham N, Brey R, Weisman MH, McGwin G, Magder LS (2012) Derivation and validation of systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 64(8):2677–2686. https://doi.org/10.1002/art.34473

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shiboski CH, Shiboski SC, Seror R, Criswell LA, Labetoulle M, Lietman TM, Rasmussen A, Scofield H, Vitali C, Bowman SJ, Mariette X, International Sjogren's Syndrome Criteria Working G (2017) 2016 American College of Rheumatology/European League Against Rheumatism Classification Criteria for Primary Sjogren's Syndrome: a consensus and data-driven methodology involving three international patient cohorts. Arthritis Rheumatol 69(1):35–45. https://doi.org/10.1002/art.39859

    Article  PubMed  Google Scholar 

  28. Efthymiou G, Dardiotis E, Liaskos C, Marou E, Tsimourtou V, Scheper T, Meyer W, Daponte A, Sakkas LI, Hadjigeorgiou G, Bogdanos DP (2016) Anti-hsp60 antibody responses based on Helicobacter pylori in patients with multiple sclerosis: (ir) Relevance to disease pathogenesis. J Neuroimmunol 298:19–23. https://doi.org/10.1016/j.jneuroim.2016.06.009

    Article  CAS  PubMed  Google Scholar 

  29. Marou E, Liaskos C, Efthymiou G, Dardiotis E, Daponte A, Scheper T, Meyer W, Hadjigeorgiou G, Bogdanos DP, Sakkas LI (2017) Increased immunoreactivity against human cytomegalovirus UL83 in systemic sclerosis. Clin Exp Rheumatol 35(4):31–34

    PubMed  Google Scholar 

  30. Marou E, Liaskos C, Simopoulou T, Efthymiou G, Dardiotis E, Katsiari C, Scheper T, Meyer W, Hadjigeorgiou G, Bogdanos DP, Sakkas LI (2017) Human cytomegalovirus (HCMV) UL44 and UL57 specific antibody responses in anti-HCMV-positive patients with systemic sclerosis. Clin Rheumatol 36(4):863–869. https://doi.org/10.1007/s10067-017-3553-5

    Article  PubMed  Google Scholar 

  31. Fujinami RS, Oldstone MB (1985) Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science (New York, NY) 230(4729):1043–1045. https://doi.org/10.1126/science.2414848

    Article  CAS  Google Scholar 

  32. Zhao G, Chen M, Liu T, Sun SY, Zhao J, Xie LX (2012) Association of HSV-1 antigen distribution in the cornea with clinical characteristics of herpetic stromal keratitis. Eur J Ophthalmol 22(Suppl 7):S40–S45. https://doi.org/10.5301/ejo.5000064

    Article  PubMed  Google Scholar 

  33. Zhao ZS, Granucci F, Yeh L, Schaffer PA, Cantor H (1998) Molecular mimicry by herpes simplex virus-type 1: autoimmune disease after viral infection. Science (New York, NY) 279(5355):1344–1347. https://doi.org/10.1126/science.279.5355.1344

    Article  CAS  Google Scholar 

  34. Bogdanos DP, Sakkas LI (2017) From microbiome to infectome in autoimmunity. Curr Opin Rheumatol 29(4):369–373. https://doi.org/10.1097/bor.0000000000000394

    Article  CAS  PubMed  Google Scholar 

  35. Polymeros D, Bogdanos DP, Day R, Arioli D, Vergani D, Forbes A (2006) Does cross-reactivity between Mycobacterium avium paratuberculosis and human intestinal antigens characterize Crohn's disease? Gastroenterology 131(1):85–96. https://doi.org/10.1053/j.gastro.2006.04.021

    Article  CAS  PubMed  Google Scholar 

  36. Polymeros D, Tsiamoulos ZP, Koutsoumpas AL, Smyk DS, Mytilinaiou MG, Triantafyllou K, Bogdanos DP, Ladas SD (2014) Bioinformatic and immunological analysis reveals lack of support for measles virus related mimicry in Crohn's disease. BMC Med 12:139. https://doi.org/10.1186/s12916-014-0139-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bogdanos DP, Baum H, Grasso A, Okamoto M, Butler P, Ma Y, Rigopoulou E, Montalto P, Davies ET, Burroughs AK, Vergani D (2004) Microbial mimics are major targets of crossreactivity with human pyruvate dehydrogenase in primary biliary cirrhosis. J Hepatol 40(1):31–39

    Article  CAS  Google Scholar 

  38. Ehser J, Holdener M, Christen S, Bayer M, Pfeilschifter JM, Hintermann E, Bogdanos D, Christen U (2013) Molecular mimicry rather than identity breaks T-cell tolerance in the CYP2D6 mouse model for human autoimmune hepatitis. J Autoimmun 42:39–49. https://doi.org/10.1016/j.jaut.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  39. Bogdanos DP, Lenzi M, Okamoto M, Rigopoulou EI, Muratori P, Ma Y, Muratori L, Tsantoulas D, Mieli-Vergani G, Bianchi FB, Vergani D (2004) Multiple viral/self immunological cross-reactivity in liver kidney microsomal antibody positive hepatitis C virus infected patients is associated with the possession of HLA B51. Int J Immunopathol Pharmacol 17(1):83–92. https://doi.org/10.1177/039463200401700112

    Article  CAS  PubMed  Google Scholar 

  40. Mahler M, Mierau R, Schlumberger W, Bluthner M (2001) A population of autoantibodies against a centromere-associated protein A major epitope motif cross-reacts with related cryptic epitopes on other nuclear autoantigens and on the Epstein-Barr nuclear antigen 1. J Mol Med (Berlin, Germany) 79(12):722–731. https://doi.org/10.1007/s001090100258

    Article  CAS  Google Scholar 

  41. Mahler M, Mierau R, Genth E, Bluthner M (2002) Development of a CENP-A/CENP-B-specific immune response in a patient with systemic sclerosis. Arthritis Rheum 46(7):1866–1872. https://doi.org/10.1002/art.10330

    Article  CAS  PubMed  Google Scholar 

  42. Lunardi C, Bason C, Navone R, Millo E, Damonte G, Corrocher R, Puccetti A (2000) Systemic sclerosis immunoglobulin G autoantibodies bind the human cytomegalovirus late protein UL94 and induce apoptosis in human endothelial cells. Nat Med 6(10):1183–1186. https://doi.org/10.1038/80533

    Article  CAS  PubMed  Google Scholar 

  43. Ripalti A, Boccuni MC, Campanini F, Landini MP (1995) Cytomegalovirus-mediated induction of antisense mRNA expression to UL44 inhibits virus replication in an astrocytoma cell line: identification of an essential gene. J Virol 69(4):2047–2057

    Article  CAS  Google Scholar 

  44. Neo JYJ, Wee SYK, Bonne I, Tay SH, Raida M, Jovanovic V, Fairhurst A-M, Lu J, Hanson BJ, MacAry PA (2019) Characterisation of a human antibody that potentially links cytomegalovirus infection with systemic lupus erythematosus. Sci Rep 9(1):9998–9998. https://doi.org/10.1038/s41598-019-46329-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang YS, Yang MC, Wang B, Weissler JC (2000) Autoantigen Ro52 directly interacts with human IgG heavy chain in vivo in mammalian cells. Mol Immunol 37(10):591–602

    Article  CAS  Google Scholar 

  46. Rhodes DA, Trowsdale J (2007) TRIM21 is a trimeric protein that binds IgG Fc via the B30.2 domain. Mol Immunol 44(9):2406–2414. https://doi.org/10.1016/j.molimm.2006.10.013

    Article  CAS  PubMed  Google Scholar 

  47. McEwan WA, Tam JC, Watkinson RE, Bidgood SR, Mallery DL, James LC (2013) Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nat Immunol 14(4):327–336. https://doi.org/10.1038/ni.2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dickson C, Fletcher AJ, Vaysburd M, Yang JC, Mallery DL, Zeng J, Johnson CM, McLaughlin SH (2018) Intracellular antibody signalling is regulated by phosphorylation of the Fc receptor TRIM21. Elife. https://doi.org/10.7554/eLife.32660

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Gary L. Norman, Inova Diagnostics for providing anti-Ro52 antibody ELISA kits for free. Part of this work entitled “Is human cytomegalovirus a viral trigger of anti-Ro52 antibodies in patients with systemic sclerosis and systemic lupus erythematosus?” was presented as an oral presentation (Parallel session: Infection and Autoimmunity(OP 731) in the 11th International Congress of Autoimmunity, 16–20 May, Lisbon 2018.

Funding

This work was supported in part by the Special Fund for Research Grants (ELKE), Research Code: 2610 (2016–2021), University of Thessaly.

Author information

Authors and Affiliations

Authors

Contributions

AG and CL: Substantial contribution to acquisition of data, statistical analysis, drafting of significant parts of the work; TS and CK: Substantial contribution to acquisition of clinical data; GE, TS, ED, and WM: Substantial contribution to acquisition of data; AT and CT: Substantial contribution to acquisition of laboratory data and serum sampling; DD: Substantial contribution to acquisition of laboratory and clinical data and serum sampling; LIS: Drafting the work, revising it critically for important intellectual content and participating in study design; DPB: Original idea, study design, interpretation of data, supervision of experimental work, drafting of the work, revising it critically for important intellectual content. All authors approved the final version to be published and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Dimitrios P. Bogdanos.

Ethics declarations

Conflict of interest

T. Scheper and W. Meyer are employees of Euroimmun; all other authors do not have anything to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gkoutzourelas, A., Liaskos, C., Simopoulou, T. et al. A study of antigen-specific anti-cytomegalovirus antibody reactivity in patients with systemic sclerosis and concomitant anti-Ro52 antibodies. Rheumatol Int 40, 1689–1699 (2020). https://doi.org/10.1007/s00296-020-04643-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-020-04643-z

Keyword

Navigation