Skip to main content

Advertisement

Log in

Characterization of cell-derived microparticles in synovial fluid and plasma of patients with rheumatoid arthritis

  • Observational Research
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Microparticles (MP) are proposed to play a role in the pathogenesis of rheumatoid arthritis (RA). This study aimed to profile cell lineage-specific MP in patients with RA, osteoarthritis (OA), and healthy controls (HC) in synovial fluid and circulation. Patients with RA (n = 40), OA (n = 30) and HC (n = 33) were included. Cell-free synovial fluid (SF) and platelet-poor plasma samples were stained with annexin V APC and antibodies against CD45, CD20, CD14, CD4, CD8, CD66b, and CD61 for multicolor flow cytometry. Mann–Whitney U test/unpaired T test was used to assess intergroup differences among RA and OA SF and clinical, serological phenotypes of RA based on normality distribution; Kruskal–Wallis test with Dunn’s multiple comparisons for comparing plasma MPs among RA, OA, and HC. Correlation between MP proportions and disease parameters was assessed by Spearman’s correlation. The proportion of annexin V+ MP in SF of patients with RA [5 (6.35)] [median (IQR)] was higher compared to OA [1.8 (1.35), p < 0.001] and plasma of patients with RA [3.45 (5.63)] compared to OA [1.85 (1.4)] and HC [0.9 (1.1), p < 0.001]. Leukocyte-derived [0.85 (1.17)], granulocyte-derived [0.4 (2.05)], monocyte-derived [0.4 (0.4)], and T cell-derived MP [CD4+ – 0.1 (0.1); CD8+ − 0.1(0.1)] were higher in RA SF (p < 0.001). Platelet-derived MP (PMP) were the major fraction [1.5 (4.23), p < 0.001] in RA plasma. Leukocyte-derived MP were higher in RA plasma [0.1 (0.2); p < 0.001) than OA and HC. Annexin V+ MP and PMP were higher in the SF of RA with extra-articular manifestations (n = 15), as compared to those without (n = 25) (p = 0.02; p < 0.01, respectively). High SF granulocyte-derived MP were observed in patients with established RA (n = 24), ACPA-positive RA (n = 32) compared to their negative counterparts (p = 0.03; p = 0.02, respectively). Our observations of higher proportions of cell-derived MP in the plasma and synovial fluid of DMARD-naïve RA patients, their clinical and serological phenotypes suggest their role in dynamic cross talk between the joint and systemic circulation, disease pathology, and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Smolen JS, Aletaha D, McInnes IB (2016) Rheumatoid arthritis. Lancet 388:2023–2038. https://doi.org/10.1016/S0140-6736(16)30173-8

    Article  CAS  PubMed  Google Scholar 

  2. Beyer C, Pisetsky DS (2010) The role of microparticles in the pathogenesis of rheumatic diseases. Nat Rev Rheumatol 6:21–29. https://doi.org/10.1038/nrrheum.2009.229

    Article  CAS  PubMed  Google Scholar 

  3. Pisetsky DS, Ullal AJ, Gauley J, Ning TC (2012) Microparticles as mediators and biomarkers of rheumatic disease. Rheumatol (United Kingdom) 51:1737–1746. https://doi.org/10.1093/rheumatology/kes028

    Article  CAS  Google Scholar 

  4. Willms A, Müller C, Julich H et al (2014) Tumour-associated circulating microparticles: A novel liquid biopsy tool for screening and therapy monitoring of colorectal carcinoma and other epithelial neoplasia. Oncotarget 7:30867–30875. https://doi.org/10.18632/oncotarget.9018

    Article  Google Scholar 

  5. Buzas EI, György B, Nagy G et al (2014) Emerging role of extracellular vesicles in inflammatory diseases. Nat Rev Rheumatol 10:356–364. https://doi.org/10.1038/nrrheum.2014.19

    Article  CAS  PubMed  Google Scholar 

  6. Withrow J, Murphy C, Liu Y et al (2016) Extracellular vesicles in the pathogenesis of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 18:1–12. https://doi.org/10.1186/s13075-016-1178-8

    Article  CAS  Google Scholar 

  7. Horstman LL, Jy W, Jimenez JJ et al (2004) New horizons in the analysis of circulating cell-derived microparticles. Keio J Med 53:210–230

    Article  CAS  PubMed  Google Scholar 

  8. Sellam J, Proulle V, Jüngel A et al (2009) Increased levels of circulating microparticles in primary Sjögren’s syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease activity. Arthritis Res Ther 11:R156. https://doi.org/10.1186/ar2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pereira J, Alfaro G, Goycoolea M et al (2006) Circulating platelet-derived microparticles in systemic lupus erythematosus. Association with increased thrombin generation and procoagulant state. Thromb Haemost 95:94–99

    Article  CAS  PubMed  Google Scholar 

  10. Niccolai E, Squatrito D, Emmi G et al (2015) A new cytofluorimetric approach to evaluate the circulating microparticles in subjects with antiphospholipid antibodies. Thromb Res 136:1252–1258. https://doi.org/10.1016/j.thromres.2015.10.018

    Article  CAS  PubMed  Google Scholar 

  11. Knijff-Dutmer EAJ, Koerts J, Nieuwland R et al (2002) Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum 46:1498–1503. https://doi.org/10.1002/art.10312

    Article  CAS  PubMed  Google Scholar 

  12. Gasparyan AY, Stavropoulos-Kalinoglou A, Mikhailidis DP et al (2011) Platelet function in rheumatoid arthritis: arthritic and cardiovascular implications. Rheumatol Int 31:153–164. https://doi.org/10.1007/s00296-010-1446-x

    Article  CAS  PubMed  Google Scholar 

  13. Berckmans RJ, Nieuwland R, Tak PP et al (2002) Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor VII-dependent mechanism. Arthritis Rheum 46:2857–2866. https://doi.org/10.1002/art.10587

    Article  CAS  PubMed  Google Scholar 

  14. Cai Z, Zhang W, Yang F et al (2012) Immunosuppressive exosomes from TGF-β1 gene-modified dendritic cells attenuate Th17-mediated inflammatory autoimmune disease by inducing regulatory T cells. Cell Res 22:607–610. https://doi.org/10.1038/cr.2011.196

    Article  CAS  PubMed  Google Scholar 

  15. Michael BR, Misra D, Chengappa K, Negi V (2018) Relevance of elevated microparticles in peripheral blood and synovial fluid of patients with rheumatoid arthritis. Indian J Rheumatol 13:222. https://doi.org/10.4103/injr.injr_101_18

    Article  Google Scholar 

  16. Aletaha D, Neogi T, Silman AJ et al (2010) 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 62:2569–2581. https://doi.org/10.1002/art.27584

    Article  PubMed  Google Scholar 

  17. Carlson RV, Boyd KM, Webb DJ (2004) The revision of the Declaration of Helsinki: past, present and future. Br J Clin Pharmacol 57:695–713. https://doi.org/10.1111/j.1365-2125.2004.02103.x

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nielsen CT, Østergaard O, Stener L et al (2012) Increased IgG on cell-derived plasma microparticles in systemic lupus erythematosus is associated with autoantibodies and complement activation. Arthritis Rheum 64:1227–1236. https://doi.org/10.1002/art.34381

    Article  CAS  PubMed  Google Scholar 

  19. Nielsen CT, Østergaard O, Stener L et al (2012) Increased IgG on cell-derived plasma microparticles in systemic lupus erythematosus is associated with autoantibodies and complement activation. Arthritis Rheum 64:1227–1236. https://doi.org/10.1002/art.34381

    Article  CAS  PubMed  Google Scholar 

  20. Anderson J, Caplan L, Yazdany J et al (2012) Rheumatoid arthritis disease activity measures: American college of rheumatology recommendations for use in clinical practice. Arthritis Care Res 64:640–647. https://doi.org/10.1002/acr.21649

    Article  Google Scholar 

  21. Man Q, Zhang L, Zhao Y et al (2018) Lymphocyte-derived microparticles stimulate osteoclastogenesis by inducing RANKL in fibroblasts of odontogenic keratocysts. Oncol Rep 40:3335–3345. https://doi.org/10.3892/or.2018.6708

    Article  CAS  PubMed  Google Scholar 

  22. Kim H-R, Mun Y, Lee K-S et al (2018) T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun 9:3630. https://doi.org/10.1038/s41467-018-06090-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Angelillo-Scherrer A (2012) Leukocyte-derived microparticles in vascular homeostasis. Circ Res 110:356–369. https://doi.org/10.1161/CIRCRESAHA.110.233403

    Article  CAS  PubMed  Google Scholar 

  24. Guervilly C, Lacroix R, Forel J-M et al (2011) High levels of circulating leukocyte microparticles are associated with better outcome in acute respiratory distress syndrome. Crit Care 15:R31. https://doi.org/10.1186/cc9978

    Article  PubMed  PubMed Central  Google Scholar 

  25. Distler JHW, Jungel A, Huber LC et al (2005) The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. Proc Natl Acad Sci 102:2892–2897. https://doi.org/10.1073/pnas.0409781102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berckmans RJ, Nieuwland R, Kraan MC et al (2005) Synovial microparticles from arthritic patients modulate chemokine and cytokine release by synoviocytes. Arthritis Res Ther 7:R536–R544. https://doi.org/10.1186/ar1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Messer L, Alsaleh G, Freyssinet JM et al (2009) Microparticle-induced release of B-lymphocyte regulators by rheumatoid synoviocytes. Arthritis Res Ther 11:1–10. https://doi.org/10.1186/ar2648

    Article  CAS  Google Scholar 

  28. Va Biró E, Nieuwland R, Tak PP et al (2007) Activated complement components and complement activator molecules on the surface of cell-derived microparticles in patients with rheumatoid arthritis and healthy individuals. Ann Rheum Dis 66:1085–1092. https://doi.org/10.1136/ard.2006.061309

    Article  CAS  Google Scholar 

  29. Reich N, Beyer C, Gelse K et al (2011) Microparticles stimulate angiogenesis by inducing ELR + CXC-chemokines in synovial fibroblasts. J Cell Mol Med 15:756–762. https://doi.org/10.1111/j.1582-4934.2010.01051.x

    Article  CAS  PubMed  Google Scholar 

  30. Jüngel A, Distler O, Schulze-Horsel U et al (2007) Microparticles stimulate the synthesis of prostaglandin E2 via induction of cyclooxygenase 2 and microsomal prostaglandin E synthase 1. Arthritis Rheum 56:3564–3574. https://doi.org/10.1002/art.22980

    Article  CAS  PubMed  Google Scholar 

  31. Greisen SR, Yan Y, Hansen AS et al (2017) Extracellular vesicles transfer the receptor programmed death-1 in rheumatoid arthritis. Front Immunol 8:851. https://doi.org/10.3389/fimmu.2017.00851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Polanco JC, Scicluna BJ, Hill AF, Götz J (2016) Extracellular vesicles isolated from the brains of rTg4510 mice seed tau protein aggregation in a threshold-dependent manner. J Biol Chem 291:12445–12466. https://doi.org/10.1074/jbc.M115.709485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang W, Liu J, Yang B et al (2017) Modulation of platelet-derived microparticles to adhesion and motility of human rheumatoid arthritis fibroblast-like synoviocytes. PLoS One 12:e0181003. https://doi.org/10.1371/journal.pone.0181003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Foulquier C, Sebbag M, Clavel C et al (2007) Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum 56:3541–3553. https://doi.org/10.1002/art.22983

    Article  CAS  PubMed  Google Scholar 

  35. Wright HL, Moots RJ, Bucknall RC, Edwards SW (2010) Neutrophil function in inflammation and inflammatory diseases. Rheumatology 49:1618–1631. https://doi.org/10.1093/rheumatology/keq045

    Article  CAS  PubMed  Google Scholar 

  36. Spengler J, Lugonja B, Jimmy Ytterberg A et al (2015) Release of active peptidyl arginine deiminases by neutrophils can explain production of extracellular citrullinated autoantigens in rheumatoid arthritis synovial fluid. Arthritis Rheumatol 67:3135–3145. https://doi.org/10.1002/art.39313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Corsiero E, Pratesi F, Prediletto E et al (2016) NETosis as source of autoantigens in rheumatoid arthritis. Front Immunol 7:485. https://doi.org/10.3389/fimmu.2016.00485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cloutier N, Tan S, Boudreau LH et al (2013) The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med 5:235–249. https://doi.org/10.1002/emmm.201201846

    Article  CAS  PubMed  Google Scholar 

  39. Burbano C, Rojas M, Muñoz-Vahos C et al (2018) Extracellular vesicles are associated with the systemic inflammation of patients with seropositive rheumatoid arthritis. Sci Rep. https://doi.org/10.1038/s41598-018-36335-x

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pisetsky DS, Lipsky PE (2010) Microparticles as autoadjuvants in the pathogenesis of SLE. Nat Rev Rheumatol 6:368–372. https://doi.org/10.1038/nrrheum.2010.66

    Article  CAS  PubMed  Google Scholar 

  41. Burnier L, Fontana P, Kwak BR, Angelillo-Scherrer A (2009) Cell-derived microparticles in haemostasis and vascular medicine. Thromb Haemost 101:439–451

    Article  CAS  PubMed  Google Scholar 

  42. Boilard E, Nigrovic PA, Larabee K et al (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327:580–583. https://doi.org/10.1126/science.1181928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barry OP, Pratico D, Lawson JA, FitzGerald GA (1997) Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J Clin Invest 99:2118–2127. https://doi.org/10.1172/JCI119385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jüngel A, Distler O, Schulze-Horsel U et al (2007) Microparticles stimulate the synthesis of prostaglandin E2 via induction of cyclooxygenase 2 and microsomal prostaglandin E synthase 1. Arthritis Rheum 56:3564–3574. https://doi.org/10.1002/art.22980

    Article  CAS  PubMed  Google Scholar 

  45. Barry OP, Praticò D, Savani RC, FitzGerald GA (1998) Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest 102:136–144. https://doi.org/10.1172/JCI2592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Forlow SB, McEver RP, Nollert MU (2000) Leukocyte-leukocyte interactions mediated by platelet microparticles under flow. Blood 95:1317–1323

    CAS  PubMed  Google Scholar 

  47. del Conde I, Shrimpton CN, Thiagarajan P, López JA (2005) Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 106:1604–1611. https://doi.org/10.1182/blood-2004-03-1095

    Article  CAS  PubMed  Google Scholar 

  48. Knijff-Dutmer EAJ, Koerts J, Nieuwland R et al (2002) Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum 46:1498–1503. https://doi.org/10.1002/art.10312

    Article  CAS  PubMed  Google Scholar 

  49. Wang F, Wang N-S, Yan C-G et al (2007) The significance of platelet activation in rheumatoid arthritis. Clin Rheumatol 26:768–771. https://doi.org/10.1007/s10067-007-0550-0

    Article  PubMed  Google Scholar 

  50. Maugeri N, Franchini S, Campana L et al (2012) Circulating platelets as a source of the damage-associated molecular pattern HMGB1 in patients with systemic sclerosis. Autoimmunity 45:584–587. https://doi.org/10.3109/08916934.2012.719946

    Article  CAS  PubMed  Google Scholar 

  51. Lood C, Tydén H, Gullstrand B et al (2016) Decreased platelet size is associated with platelet activation and anti-phospholipid syndrome in systemic lupus erythematosus. Rheumatology 56:kew437. https://doi.org/10.1093/rheumatology/kew437

    Article  CAS  Google Scholar 

  52. Arraud N, Gounou C, Turpin D, Brisson AR (2016) Fluorescence triggering: a general strategy for enumerating and phenotyping extracellular vesicles by flow cytometry. Cytom Part A 89:184–195. https://doi.org/10.1002/cyto.a.22669

    Article  CAS  Google Scholar 

  53. Knijff-Dutmer EAJ, Koerts J, Nieuwland R et al (2002) Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum 46:1498–1503. https://doi.org/10.1002/art.10312

    Article  CAS  PubMed  Google Scholar 

  54. Berckmans RJ, Nieuwland R, Tak PP et al (2002) Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor VII-dependent mechanism. Arthritis Rheum 46:2857–2866. https://doi.org/10.1002/art.10587

    Article  CAS  PubMed  Google Scholar 

  55. Messer L, Alsaleh G, Freyssinet J-M et al (2009) Microparticle-induced release of B-lymphocyte regulators by rheumatoid synoviocytes. Arthritis Res Ther 11:R40. https://doi.org/10.1186/ar2648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Umekita K, Hidaka T, Ueno S et al (2009) Leukocytapheresis (LCAP) decreases the level of platelet-derived microparticles (MPs) and increases the level of granulocytes-derived MPs: a possible connection with the effect of LCAP on rheumatoid arthritis. Mod Rheumatol 19:265–272. https://doi.org/10.3109/s10165-009-0164-2

    Article  PubMed  Google Scholar 

  57. György B, Szabó TG, Turiák L et al (2012) Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle) signatures in joint diseases. PLoS One 7:e49726. https://doi.org/10.1371/journal.pone.0049726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rodríguez-Carrio J, Alperi-López M, López P et al (2015) Altered profile of circulating microparticles in rheumatoid arthritis patients. Clin Sci 128:437–448. https://doi.org/10.1042/CS20140675

    Article  CAS  Google Scholar 

  59. Viñuela-Berni V, Doníz-Padilla L, Figueroa-Vega N et al (2015) Proportions of several types of plasma and urine microparticles are increased in patients with rheumatoid arthritis with active disease. Clin Exp Immunol 180:442–451. https://doi.org/10.1111/cei.12598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fan W, Wang W, Wu J et al (2017) Identification of CD4 + T-cell-derived CD161 + CD39 + and CD39 + CD73 + microparticles as new biomarkers for rheumatoid arthritis. Biomark Med 11:107–116. https://doi.org/10.2217/bmm-2016-0261

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by Indian Council of Medical Research (ICMR), India (IRIS ID No.: 2012-2279) and JIPMER Intramural Research Fund (JIP/Res/Intra-PhD/01/2014 and JIP/Res/Intra-PhD/02/2015-16).

Author information

Authors and Affiliations

Authors

Contributions

VSN, BNRM, CKG, and KV contributed to the conception and design, acquisition of data, analysis, and interpretation of the data and final approval of the version to be published. BNRM and KV drafted the article. VSN critically revised the article for important intellectual content. VSN, BNRM, CKG, and KV agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Vir Singh Negi.

Ethics declarations

Conflict of interest

Ms. Benita NR Michael, Mr. Vallayyachari Kommoju, Dr. Chengappa Kavadichanda Ganapathy, and Dr. Vir Singh Negi declare that they have no conflict of interest.

Ethical approval

The study was approved by the JIPMER institute ethics committee and conducted the following Principles of the Declaration of Helsinki (1964) and its later amendments or comparable ethical standards. Protocol No. JIP/IEC/2013/1/107 dated 15.03.2013.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michael, B.N.R., Kommoju, V., Kavadichanda Ganapathy, C. et al. Characterization of cell-derived microparticles in synovial fluid and plasma of patients with rheumatoid arthritis. Rheumatol Int 39, 1377–1387 (2019). https://doi.org/10.1007/s00296-019-04337-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-019-04337-1

Keywords

Navigation