Skip to main content

Advertisement

Log in

M2 macrophages and their role in rheumatic diseases

  • Review
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

As a component of the innate immune system, macrophages play a crucial role in host defense against a variety of microbes. Conventionally, macrophages have been classified as M1 and M2 depending on their phenotype and role in immune regulation. M1 macrophages are generally pro-inflammatory, while M2 (also known as alternatively activated macrophages) are anti-inflammatory. M1 macrophages release pro-inflammatory cytokines, reactive nitrogen, and oxygen intermediates, and kill pathogens, whereas their M2 counterparts participate in the resolution of inflammation, remodeling of tissue, angiogenesis, and tissue repair. Macrophages are also crucial in the pathogenesis of immune-inflammatory disorders, such as, arthritis. In this review, we discuss the markers of human M2 macrophages, the role played by them in inflammation or progression of rheumatic diseases, their potential to act as biomarkers, and, finally, therapeutic strategies aiming at altering/enhancing the macrophage phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Metchnikoff E (1989) On the present state of the question of immunity in infectious diseases. Scand J Immunol 4:387–398

    Article  Google Scholar 

  2. Mackaness GB (1962) Cellular resistance to infection. J Exp Med 116:381–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Epelman S, Lavine KJ, Randolph GJ (2014) Origin and functions of tissue macrophages. Immunity 41(1):21–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176(1):287–292

    Article  CAS  PubMed  Google Scholar 

  5. Mills CD, Ley K (2014) M1 and M2 macrophages: the chicken and the egg of immunity. J Innate Immun 6(6):716–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roszer T (2015) Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediat Inflamm 2015:816480

    Article  CAS  Google Scholar 

  7. El Kasmi KC, Qualls JE, Pesce JT et al (2008) Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat Immunol 9(12):1399–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang Z, Ming XF (2014) Functions of arginase isoforms in macrophage inflammatory responses: impact on cardiovascular diseases and metabolic disorders. Front Immunol 5:533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Porcheray F, Viaud S, Rimaniol A-C et al (2005) Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 142(3):481–489

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Svensson-Arvelund J, Mehta RB, Lindau R et al (2015) The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages. J Immunol 194(4):1534–1544

    Article  CAS  PubMed  Google Scholar 

  11. Dupasquier M, Stoitzner P, Wan H et al (2006) The dermal microenvironment induces the expression of the alternative activation marker CD301/mMGL in mononuclear phagocytes, independent of IL-4/IL-13 signaling. J Leukoc Biol 80(4):838–849

    Article  CAS  PubMed  Google Scholar 

  12. Zeyda M, Farmer D, Todoric J et al (2007) Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int J Obes (Lond) 31(9):1420–1428

    Article  CAS  Google Scholar 

  13. Titos E, Rius B, González-Périz A et al (2011) Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J Immunol 187(10):5408–5418

    Article  CAS  PubMed  Google Scholar 

  14. Nawaz A, Aminuddin A, Kado T et al (2017) CD206+ M2-like macrophages regulate systemic glucose metabolism by inhibiting proliferation of adipocyte progenitors. Nat Commun 8(1):286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Madsen DH, Leonard D, Masedunskas A et al (2013) M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. J Cell Biol 202(6):951–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gao S, Zhou J, Liu N et al (2015) Curcumin induces M2 macrophage polarization by secretion IL-4 and/or IL-13. J Mol Cell Cardiol 85:131–139

    Article  CAS  PubMed  Google Scholar 

  17. Fabriek BO, Dijkstra CD, van den Berg TK (2005) The macrophage scavenger receptor CD163. Immunobiology 210(2–4):153–160

    Article  CAS  PubMed  Google Scholar 

  18. Law SK, Micklem KJ, Shaw JM, Zhang XP, Dong Y, Willis AC, Mason DY (1993) A new macrophage differentiation antigen which is a member of the scavenger receptor superfamily. Eur J Immunol 23(9):2320–2325

    Article  CAS  PubMed  Google Scholar 

  19. Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SK, Moestrup SK (2001) Identification of the hemoglobin scavenger receptor. Nature 409(6817):198–201

    Article  CAS  PubMed  Google Scholar 

  20. Fabriek BO, Polfliet MM, Vloet RP et al (2007) The macrophage CD163 surface glycoprotein is an erythroblast adhesion receptor. Blood 109(12):5223–5229

    Article  CAS  PubMed  Google Scholar 

  21. Fabriek BO, van Bruggen R, Deng DM et al (2009) The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Blood 113(4):887–892

    Article  CAS  PubMed  Google Scholar 

  22. Loures FV, Araújo EF, Feriotti C, Bazan SB, Costa TA, Brown GD, Calich VL (2014) Dectin-1 induces M1 macrophages and prominent expansion of CD8+IL-17+ cells in pulmonary Paracoccidioidomycosis. J Infect Dis 210(5):762–773

    Article  CAS  PubMed  Google Scholar 

  23. Feriotti C, Bazan SB, Loures FV, Araújo EF, Costa TA, Calich VL (2015) Expression of dectin-1 and enhanced activation of NALP3 inflammasome are associated with resistance to paracoccidioidomycosis. Front Microbiol 6:913

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gales A, Conduche A, Bernad J, Lefevre L, Olagnier D, Beraud M, Martin-Blondel G (2010) PPARgamma controls Dectin-1 expression required for host antifungal defense against Candida albicans. PLoS Pathog 6(1):e1000714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nandakumar V, Hebrink D, Jenson P, Kottom T, Limper AH (2017) Differential macrophage polarization from pneumocystis in immunocompetent and immunosuppressed hosts: potential adjunctive therapy during pneumonia. Infect Immun 85(3):e00939–e00916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Willment JA, Lin HH, Reid DM et al (2003) Dectin-1 expression and function are enhanced on alternatively activated and GM-CSF-treated macrophages and are negatively regulated by IL-10, dexamethasone, and lipopolysaccharide. J Immunol 171(9):4569–4573

    Article  CAS  PubMed  Google Scholar 

  27. Zizzari IG, Napoletano C, Battisti F et al (2015) MGL receptor and immunity: when the ligand can make the difference. J Immunol Res 2015:450695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Y, Han CC, Cui D, Li Y, Ma Y, Wei W (2017) Is macrophage polarization important in rheumatoid arthritis? Int Immunopharmacol 50:345–352

    Article  CAS  PubMed  Google Scholar 

  29. Zhao J, Yuan W, Tao C, Sun P, Yang Z, Xu W (2017) M2 polarization of monocytes in ankylosing spondylitis and relationship with inflammation and structural damage. APMIS 125(12):1070–1075

    Article  CAS  PubMed  Google Scholar 

  30. Ciccia F, Alessandro R, Rizzo A et al (2014) Macrophage phenotype in the subclinical gut inflammation of patients with ankylosing spondylitis. Rheumatology 53(1):104–113

    Article  CAS  PubMed  Google Scholar 

  31. Ambarus CA, Noordenbos T, de Hair MJ, Tak PP, Baeten DL (2012) Intimal lining layer macrophages but not synovial sublining macrophages display an IL-10 polarized-like phenotype in chronic synovitis. Arthritis Res Ther 14(2):R74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vandooren B, Noordenbos T, Ambarus C et al (2009) Absence of a classically activated macrophage cytokine signature in peripheral spondylarthritis, including psoriatic arthritis. Arthritis Rheum 60(4):966–975

    Article  CAS  PubMed  Google Scholar 

  33. Fuentes-Duculan J, Suárez-Fariñas M, Zaba LC et al (2010) A subpopulation of CD163-positive macrophages is classically activated in psoriasis. J Investig Dermatol 130(10):2412–2422

    Article  CAS  PubMed  Google Scholar 

  34. Seo DH, Che X, Kwak MS et al (2017) Interleukin-33 regulates intestinal inflammation by modulating macrophages in inflammatory bowel disease. Sci Rep 7(1):851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhu W, Yu J, Nie Y, Shi X, Liu Y, Li F, Zhang XL (2014) Disequilibrium of M1 and M2 macrophages correlates with the development of experimental inflammatory bowel diseases. Immunol Investig 43(7):638–652

    Article  CAS  Google Scholar 

  36. Salvador P, Macías-Ceja DC, Gisbert-Ferrándiz L et al (2018) CD16+ macrophages mediate fibrosis in inflammatory bowel disease. J Crohns Colitis 12(5):589–599

    Article  PubMed  Google Scholar 

  37. Janka GE (2012) Familial and acquired hemophagocytic lymphohistiocytosis. Annu Rev Med 63:233–246

    Article  CAS  PubMed  Google Scholar 

  38. Bleesing J, Prada A, Siegel DM et al (2007) The diagnostic significance of soluble CD163 and soluble interleukin-2 receptor alpha-chain in macrophage activation syndrome and untreated new-onset systemic juvenile idiopathic arthritis. Arthritis Rheum 56(3):965–971

    Article  CAS  PubMed  Google Scholar 

  39. Møller HJ, Aerts H, Grønbaek H et al (2002) Soluble CD163: a marker molecule for monocyte/macrophage activity in disease. Scand J Clin Lab Investig Suppl 237:29–33

    Article  Google Scholar 

  40. Fall N, Barnes M, Thornton S et al (2007) Gene expression profiling of peripheral blood from patients with untreated new-onset systemic juvenile idiopathic arthritis reveals molecular heterogeneity that may predict macrophage activation syndrome. Arthritis Rheum 56(11):3793–3804

    Article  CAS  PubMed  Google Scholar 

  41. Sakumura N, Shimizu M, Mizuta M, Inoue N, Nakagishi Y, Yachie A (2018) Soluble CD163, a unique biomarker to evaluate the disease activity, exhibits macrophage activation in systemic juvenile idiopathic arthritis. Cytokine 18:30216-3

    Google Scholar 

  42. Reddy VV, Myles A, Cheekatla SS, Singh S, Aggarwal A (2014) Soluble CD25 in serum: a potential marker for subclinical macrophage activation syndrome in patients with active systemic onset juvenile idiopathic arthritis. Int J Rheum Dis 17(3):261–267

    Article  CAS  PubMed  Google Scholar 

  43. Schaer CA, Vallelian F, Imhof A, Schoedon G, Schaer DJ (2008) Heme carrier protein (HCP-1) spatially interacts with the CD163 hemoglobin uptake pathway and is a target of inflammatory macrophage activation. J Leukoc Biol 83(2):325–333

    Article  CAS  PubMed  Google Scholar 

  44. Aggarwal A, Gaur P, Yadav A (2017) Evidence for alternatively activated (M2) macrophage activation in patients with enthesitis related arthritis category of juvenile idiopathic arthritis. In: ACR/ARHP annual meeting, San Diego

  45. Fukui S, Iwamoto N, Takatani A, Igawa T, Shimizu T, Umeda M, Nishino A (2017) M1 and M2 Monocytes in Rheumatoid Arthritis: A Contribution of Imbalance of M1/M2 Monocytes to Osteoclastogenesis. Front Immunol 8:1958

    Article  CAS  PubMed  Google Scholar 

  46. Mottonen M, Isomaki P, Saario R, Toivanen P, Punnonen J, Lassila O (1998) Interleukin-10 inhibits the capacity of synovial macrophages to function as antigen-presenting cells. Br J Rheumatol 37(11):1207–1214

    Article  CAS  PubMed  Google Scholar 

  47. Zhu W, Li X, Fang S, Zhang X, Wang Y, Zhang T, Li Z (2015) Anti-citrullinated protein antibodies induce macrophage subset disequilibrium in RA patients. Inflammation 38(6):2067–2075

    Article  CAS  PubMed  Google Scholar 

  48. Vogelpoel LT, Hansen IS, Rispens T, Muller FJ, van Capel TM, Turina MC, Vos JB (2014) Fc gamma receptor-TLR cross-talk elicits pro-inflammatory cytokine production by human M2 macrophages. Nat Commun 5:5444

    Article  CAS  PubMed  Google Scholar 

  49. Sun W, Zhang H, Wang H, Chiu YG, Wang M, Ritchlin CT, Kiernan A (2017) Targeting notch-activated M1 macrophages attenuates joint tissue damage in a mouse model of inflammatory arthritis. J Bone Miner Res 32(7):1469–1480

    Article  CAS  PubMed  Google Scholar 

  50. Narayan N, Owen DR, Mandhair H, Smyth E, Carlucci F, Saleem A, Gunn RN (2018) Translocator protein as an imaging marker of macrophage and stromal activation in rheumatoid arthritis pannus. J Nucl Med 59(7):1125–1132

    Article  CAS  PubMed  Google Scholar 

  51. Daghestani HN, Pieper CF, Kraus VB (2015) Soluble macrophage biomarkers indicate inflammatory phenotypes in patients with knee osteoarthritis. Arthritis Rheumatol 67(4):956–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. van Lent PL, Blom AB, van der Kraan P, Holthuysen AE, Vitters E, van Rooijen N, Smeets RL (2004) Crucial role of synovial lining macrophages in the promotion of transforming growth factor beta-mediated osteophyte formation. Arthritis Rheum 50(1):103–111

    Article  CAS  PubMed  Google Scholar 

  53. Benito MJ, Veale DJ, FitzGerald O, van den Berg WB, Bresnihan B (2005) Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis 64(9):1263–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Utomo L, Bastiaansen-Jenniskens YM, Verhaar JA, van Osch GJ (2016) Cartilage inflammation and degeneration is enhanced by pro-inflammatory (M1) macrophages in vitro, but not inhibited directly by anti-inflammatory (M2) macrophages. Osteoarthr Cartil 24(12):2162–2170

    Article  CAS  Google Scholar 

  55. Fahy N, de Vries-van Melle ML, Lehmann J, Wei W, Grotenhuis N, Farrell E (2014) Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state. Osteoarthr Cartil 22(8):1167–1175

    Article  CAS  Google Scholar 

  56. Jeong JH, Hong S, Kwon OC, Ghang B, Hwang I, Kim YG, Lee CK (2017) CD14(+) Cells with the Phenotype of Infiltrated Monocytes Consist of Distinct Populations Characterized by Anti-inflammatory as well as Pro-inflammatory Activity in Gouty Arthritis. Front Immunol 8:1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martin WJ, Walton M, Harper J (2009) Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal-induced murine peritoneal model of acute gout. Arthritis Rheum 60(1):281–289

    Article  PubMed  Google Scholar 

  58. Garcia-Melchor E, Yagüe J, Juan M, Harper J (2014) Macrophages-Mediated Response to Uric Acid Crystals Is Modulated By Their Functional Polarization. Arthritis Rheum 66(10,suppl):95959

    Google Scholar 

  59. Li J, Yu YF, Liu CH, Wang CM (2017) Significance of M2 macrophages in glomerulonephritis with crescents. Pathol Res Pract 213(9):1215–1220

    Article  CAS  PubMed  Google Scholar 

  60. Li J, Liu CH, Gao B, Xu DL (2015) Clinical-pathologic significance of CD163 positive macrophage in IgA nephropathy patients with crescents. Int J Clin Exp Med 8(6):9299–9305

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao L, David MZ, Hyjek E, Chang A, Meehan SM (2015) M2 macrophage infiltrates in the early stages of ANCA-associated pauci-immune necrotizing GN. Clin J Am Soc Nephrol 10(1):54–62

    Article  CAS  PubMed  Google Scholar 

  62. Han S, Zhuang H, Shumyak S, Wu J, Li H, Yang LJ, Reeves WH (2017) A novel subset of anti-inflammatory CD138+ macrophages is deficient in mice with experimental lupus. J Immunol 199(4):1261–1274

    Article  CAS  PubMed  Google Scholar 

  63. Cai Y, Zhang W, Xion S (2013) Mannose-binding lectin blunts macrophage polarization and ameliorates lupus nephritis. PLoS One 8(4):e62465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nakayama W, Jinnin M, Makino K et al (2012) CD163 expression is increased in the involved skin and sera of patients with systemic lupus erythematosus. Eur J Dermatol 22(4):512–517

    CAS  PubMed  Google Scholar 

  65. Zizzo G, Guerrieri J, Dittman LM, Merrill JT, Cohen PL (2013) Circulating levels of soluble MER in lupus reflect M2c activation of monocytes/macrophages, autoantibody specificities and disease activity. Arthritis Res Ther 15(6):R212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Olmes G, Büttner-Herold M, Ferrazzi F, Distel L, Amann K, Daniel C (2016) CD163+ M2c-like macrophages predominate in renal biopsies from patients with lupus nephritis. Arthritis Res Ther 18:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Endo N, Tsuboi N, Furuhashi K et al (2016) Urinary soluble CD163 level reflects glomerular inflammation in human lupus nephritis. Nephrol Dial Transplant 31(12):2023–2033

    Article  CAS  PubMed  Google Scholar 

  68. Gupta R, Yadav A, Aggarwal A (2016) Urinary soluble CD163, an M2 macrophage marker, reflects the renal disease activity in lupus nephritis: a cross sectional and longitudinal assessment. Arthritis Rheumatol 68(10 Suppl):1282

    Google Scholar 

  69. York MR, Nagai T, Mangini AJ, Lemaire R, van Seventer JM, Lafyatis R (2007) A macrophage marker, Siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I interferons and toll-like receptor agonists. Arthritis Rheum 56(3):1010–1020

    Article  CAS  PubMed  Google Scholar 

  70. Higashi-Kuwata N, Jinnin M, Makino T et al (2010) Characterization of monocyte/macrophage subsets in the skin and peripheral blood derived from patients with systemic sclerosis. Arthritis Res Ther 12(4):R128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wynn TA, Vannella KM (2016) Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44(3):450–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bielecki M, Kowal K, Lapinska A, Chyczewski L, Kowal-Bielecka O (2013) Increased release of soluble CD163 by the peripheral blood mononuclear cells is associated with worse prognosis in patients with systemic sclerosis. Adv Med Sci 58(1):126–133

    Article  CAS  PubMed  Google Scholar 

  73. Mathai SK, Gulati M, Peng X, Russell TR, Shaw AC, Rubinowitz AN, Murray LA (2010) Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype. Lab Investig 90(6):812–823

    Article  CAS  PubMed  Google Scholar 

  74. Christmann RB, Hayes E, Pendergrass S, Padilla C, Farina G, Affandi AJ, Whitfield ML (2011) Interferon and alternative activation of monocyte/macrophages in systemic sclerosis-associated pulmonary arterial hypertension. Arthritis Rheum 63(6):1718–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Maier C, Ramming A, Bergmann C, Weinkam R, Kittan N, Schett G, Distler JHW (2017) Inhibition of phosphodiesterase 4 (PDE4) reduces dermal fibrosis by interfering with the release of interleukin-6 from M2 macrophages. Ann Rheum Dis 76(6):1133–1141

    Article  CAS  PubMed  Google Scholar 

  76. Furukawa S, Moriyama M, Miyake K, Nakashima H, Tanaka A, Maehara T, Iizuka-Koga M (2017) Interleukin-33 produced by M2 macrophages and other immune cells contributes to Th2 immune reaction of IgG4-related disease. Sci Rep 7:42413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Furukawa S, Moriyama M, Tanaka A, Maehara T, Tsuboi H, Iizuka M, Hayashida JN (2015) Preferential M2 macrophages contribute to fibrosis in IgG4-related dacryoadenitis and sialoadenitis, so-called Mikulicz’s disease. Clin Immunol 156(1):9–18

    Article  CAS  PubMed  Google Scholar 

  78. Kodelja V, Muller C, Politz O, Hakij N, Orfanos CE, Goerdt S (1998) Alternative macrophage activation-associated CC-chemokine-1, a novel structural homologue of macrophage inflammatory protein-1 alpha with a Th2-associated expression pattern. J Immunol 160(3):1411–1418

    CAS  PubMed  Google Scholar 

  79. Akiyama M, Yasuoka H, Yoshimoto K, Takeuchi T (2017) CC-chemokine ligand 18 is a useful biomarker associated with disease activity in IgG4-related disease. Ann Rheum Dis 2017:212110

    Google Scholar 

  80. Aota K, Yamanoi T, Kani K, Nakashiro KI, Ishimaru N, Azuma M (2018) Inverse correlation between the number of CXCR3(+) macrophages and the severity of inflammatory lesions in Sjogren’s syndrome salivary glands: a pilot study. J Oral Pathol Med. https://doi.org/10.1111/jop.12756

    Article  PubMed  Google Scholar 

  81. Caorsi R, Penco F, Schena F, Gattorno M (2016) Monogenic polyarteritis: the lesson of ADA2 deficiency. Pediatr Rheumatol Online J 14(1):51

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhou Q, Yang D, Ombrello AK, Zavialov AV, Toro C, Zavialov AV, Stone DL (2014) Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med 370(10):911–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Alvarado-Vazquez PA, Bernal L, Paige CA et al (2017) Macrophage-specific nanotechnology-driven CD163 overexpression in human macrophages results in an M2 phenotype under inflammatory conditions. Immunobiology 222(8–9):900–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hayder M, Poupot M, Baron M, Nigon D, Turrin CO, Caminade AM, Majoral JP (2011) A phosphorus-based dendrimer targets inflammation and osteoclastogenesis in experimental arthritis. Sci Transl Med 3(81):81ra35

    Article  CAS  PubMed  Google Scholar 

  85. Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant C, Tourlomousis P (2016) Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell 167(2):457–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang J, Lin Y, Li C et al (2016) IL-35 decelerates the inflammatory process by regulating inflammatory cytokine secretion and M1/M2 macrophage ratio in psoriasis. J Immunol 197(6):2131–2144

    Article  CAS  PubMed  Google Scholar 

  87. Shin TH, Kim HS, Kang TW et al (2016) Human umbilical cord blood-stem cells direct macrophage polarization and block inflammasome activation to alleviate rheumatoid arthritis. Cell Death Dis 7(12):e2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jain S, Tran TH, Amiji M (2015) Macrophage repolarization with targeted alginate nanoparticles containing IL-10 plasmid DNA for the treatment of experimental arthritis. Biomaterials 61:162–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li J, Hsu HC, Ding Y, Li H, Wu Q, Yang P, Luo B (2014) Inhibition of fucosylation reshapes inflammatory macrophages and suppresses type II collagen-induced arthritis. Arthritis Rheumatol 66(9):2368–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sultana F, Neog MK, Rasool M (2017) Withaferin-A, a steroidal lactone encapsulated mannose decorated liposomes ameliorates rheumatoid arthritis by intriguing the macrophage repolarization in adjuvant-induced arthritic rats. Colloids Surf B Biointerfaces 155:349–365

    Article  CAS  PubMed  Google Scholar 

  91. Tong WW, Zhang C, Hong T, Liu DH, Wang C, Li J, He XK (2018) Silibinin alleviates inflammation and induces apoptosis in human rheumatoid arthritis fibroblast-like synoviocytes and has a therapeutic effect on arthritis in rats. Sci Rep 8(1):3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Siebelt M, Korthagen N, Wei W, Groen H, Bastiaansen-Jenniskens Y, Muller C, Waarsing JH (2015) Triamcinolone acetonide activates an anti-inflammatory and folate receptor-positive macrophage that prevents osteophytosis in vivo. Arthritis Res Ther 17:352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dhanasekar C, Kalaisevan S, Rasool M (2015) Morin, a bioflavonoid suppresses monosodium urate crystal-induced inflammatory immune response in RAW 264.7 macrophages through the inhibition of inflammatory mediators, intracellular ROS levels and NF-κB activation. PLoS One 10(12):e0145093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee SY, Lee SW, Lee SY, Hong KW, Bae SS, Kim K, Kim CD (2017) SIRT1/adenosine monophosphate-activated protein kinase alpha signaling enhances macrophage polarization to an anti-inflammatory phenotype in rheumatoid arthritis. Front Immunol 8:1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Furuhashi K, Tsuboi N, Shimizu A, Katsuno T, Kim H, Saka Y, Ozaki T (2013) Serum-starved adipose-derived stromal cells ameliorate crescentic GN by promoting immunoregulatory macrophages. J Am Soc Nephrol 24(4):587–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li F, Yang Y, Zhu X, Huang L, Xu J (2015) Macrophage polarization modulates development of systemic lupus erythematosus. Cell Physiol Biochem 37(4):1279–1288

    Article  CAS  PubMed  Google Scholar 

  97. Liu R, Fan T, Geng W, Chen Y, Ruan Q, Zhang C (2017) Negative immune regulator TIPE2 promotes M2 macrophage differentiation through the activation of PI3K-AKT signaling pathway. PLoS One 12(1):e0170666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amita Aggarwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, S., Aggarwal, A. M2 macrophages and their role in rheumatic diseases. Rheumatol Int 39, 769–780 (2019). https://doi.org/10.1007/s00296-018-4120-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-018-4120-3

Keywords

Navigation