Advertisement

Rheumatology International

, Volume 38, Issue 7, pp 1225–1234 | Cite as

Decreased CD22 expression and intracellular signaling aberrations in B cells of patients with systemic sclerosis

  • Konstantinos Melissaropoulos
  • Stamatis-Nick LiossisEmail author
Observational Research

Abstract

The objective of the study was to explore the phenotype and intracellular signaling events of B cells in patients with systemic sclerosis (SSc). Peripheral blood B cell surface markers CD19 and CD22 were evaluated by flow cytometry in 23 patients with SSc and seven healthy individuals. Levels of intracellular kinases Lyn, Syk and P-Y 348 Syk along with phosphatase SHP-1 were examined with Western immunoblotting in selected patients. P-Y 822 CD22 was subsequently evaluated flow cytometrically in antigen receptor stimulated B cells. A statistically significant decrease in CD22 B cell surface expression was found in the diffuse subset of patients (median CD22 MFI ± SD was 5.90 ± 2.35 vs 10.20 ± 1.88 for patients vs healthy controls respectively; p = 0.021), while no statistically significant change was found regarding CD19. CD22 underexpression was more pronounced when interstitial lung disease (ILD) was present (median CD22 MFI ± SD was 5.90 ± 2.25 vs 10.20 ± 1.88 for patients with ILD vs healthy controls respectively; p = 0.011). CD22 phosphorylation following B cell receptor (BCR) stimulation was also found to be impaired in patients with diffuse SSc (median change in MFI ± SD was 0.28 ± 0.09 vs 0.38 ± 0.08 for patients vs healthy controls respectively; p = 0.034). Low CD22 expression was arithmetically correlated with kinase Lyn underexpression (Pearson coefficient 0.926; p = ns) in B cells from a small sample of patients. These results suggest that CD22 underexpression and impaired phosphorylation along with implications for Lyn kinase aberrations could contribute to the activated B cell phenotype in SSc.

Keywords

B cell Systemic sclerosis CD22 CD19 Lyn 

Notes

Acknowledgements

We would like to thank all study participants. We would also like to thank Eugenia Verigou, MD, for her valuable contribution regarding the flow cytometry experiments and figures.

Author contributions

KM designed the study, performed patient recruitment, performed flow cytometry and western immunoblotting experiments, analyzed the data and drafted the manuscript. SNL conceived the study concept, designed the study, participated in patient recruitment, data analysis and manuscript drafting and revision. All authors read and approved the manuscript.

Funding

This work was supported by the University of Patras through the “Karathodori” research grant and the Hellenic Rheumatology Society through a scholarship.

Compliance with ethical standards

Conflict of interest

All authors declare no conflict of interest.

References

  1. 1.
    Varga J, Abraham D (2007) Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 117:557–567CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Pillai S, Mattoo H, Cariappa A (2011) B cells and autoimmunity. Curr Opin Immunol 23:721–731CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Saito E, Fujimoto M, Hasegawa M, Komura K, Hamaguchi Y, Kaburagi Y et al (2002) CD19-dependent B lymphocyte signaling thresholds influence skin fibrosis and autoimmunity in the tight-skin mouse. J Clin Invest 109:1453–1462CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Asano N, Fujimoto M, Yazawa N, Shirasawa S, Hasegawa M, Okochi H et al (2004) B Lymphocyte signaling established by the CD19/CD22 loop regulates autoimmunity in the tight-skin mouse. Am J Pathol 165:641–650CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yoshizaki A, Iwata Y, Komura K, Ogawa F, Hara T, Muroi E et al (2008) CD19 regulates skin and lung fibrosis via toll-like receptor signaling in a model of bleomycin-induced scleroderma. Am J Pathol 172:1650–1663CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Komura K, Yanaba K, Horikawa M, Ogawa F, Fujimoto M, Tedder TF et al (2008) CD19 regulates the development of bleomycin-induced pulmonary fibrosis in a mouse model. Arthritis Rheum 58:3574–3584CrossRefPubMedGoogle Scholar
  7. 7.
    Yoshizaki A, Sato S (2015) Abnormal B lymphocyte activation and function in systemic sclerosis. Ann Dermatol 27:1CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sato S, Fujimoto M, Hasegawa M, Takehara K (2004) Altered blood B lymphocyte homeostasis in systemic sclerosis: expanded naive B cells and diminished but activated memory B cells. Arthritis Rheum 50:1918–1927CrossRefPubMedGoogle Scholar
  9. 9.
    Matsushita T, Hasegawa M, Yanaba K, Kodera M, Takehara K, Sato S (2006) Elevated serum BAFF levels in patients with systemic sclerosis: enhanced BAFF signaling in systemic sclerosis B lymphocytes. Arthritis Rheum 54:192–201CrossRefPubMedGoogle Scholar
  10. 10.
    Mavropoulos A, Simopoulou T, Varna A, Liaskos C, Katsiari CG, Bogdanos DP et al (2016) Breg cells are numerically decreased and functionally impaired in patients with systemic sclerosis. Arthritis Rheumatol 68:494–504CrossRefPubMedGoogle Scholar
  11. 11.
    Matsushita T, Hamaguchi Y, Hasegawa M, Takehara K, Fujimoto M (2016) Decreased levels of regulatory B cells in patients with systemic sclerosis: association with autoantibody production and disease activity. Rheumatology 55:263–267CrossRefPubMedGoogle Scholar
  12. 12.
    François A, Chatelus E, Wachsmann D, Sibilia J, Bahram S, Alsaleh G et al (2013) B lymphocytes and B-cell activating factor promote collagen and profibrotic markers expression by dermal fibroblasts in systemic sclerosis. Arthritis Res Ther 15:R168CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Daoussis D, Liossis S-NC (2013) B cells tell scleroderma fibroblasts to produce collagen. Arthritis Res Ther 15:125CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dumoitier N, Chaigne B, Régent A, Lofek S, Mhibik M, Dorfmüller P et al (2017) Scleroderma peripheral B lymphocytes secrete interleukin-6 and transforming growth factor β and activate fibroblasts. Arthritis Rheumatol 69:1078–1089CrossRefPubMedGoogle Scholar
  15. 15.
    Whitfield ML, Finlay DR, Murray JI, Troyanskaya OG, Chi J-T, Pergamenschikov A et al (2003) Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc Natl Acad Sci USA 100:12319–12324CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lafyatis R, O’Hara C, Feghali-Bostwick CA, Matteson E (2007) B cell infiltration in systemic sclerosis-associated interstitial lung disease. Arthritis Rheum 56:3167–3168CrossRefPubMedGoogle Scholar
  17. 17.
    De Santis M, Bosello SL, Peluso G, Pinnelli M, Alivernini S, Zizzo G et al (2012) Bronchoalveolar lavage fluid and progression of scleroderma interstitial lung disease. Clin Respir J 6:9–17CrossRefPubMedGoogle Scholar
  18. 18.
    Rueda B, Gourh P, Broen J, Agarwal SK, Simeon C, Ortego-Centeno N et al (2010) BANK1 functional variants are associated with susceptibility to diffuse systemic sclerosis in Caucasians. Ann Rheum Dis 69:700–705CrossRefPubMedGoogle Scholar
  19. 19.
    Ito I, Kawaguchi Y, Kawasaki A, Hasegawa M, Ohashi J, Kawamoto M et al (2010) Association of the FAM167A-BLK region with systemic sclerosis. Arthritis Rheum 62:890–895CrossRefPubMedGoogle Scholar
  20. 20.
    Tedder TF, Sato S, Poe JC, Fujimoto M (2000) CD19 and CD22 regulate a B lymphocyte signal transduction pathway that contributes to autoimmunity. Keio J Med 49:1–13CrossRefPubMedGoogle Scholar
  21. 21.
    Sato S, Hasegawa M, Fujimoto M, Tedder TF, Takehara K (2000) Quantitative genetic variation in CD19 expression correlates with autoimmunity. J Immunol 165:6635–6643CrossRefPubMedGoogle Scholar
  22. 22.
    Müller J, Nitschke L (2014) The role of CD22 and Siglec-G in B-cell tolerance and autoimmune disease. Nat Rev Rheumatol 10:422–428CrossRefPubMedGoogle Scholar
  23. 23.
    Dal Porto JM, Gauld SB, Merrell KT, Mills D, Pugh-Bernard AE, Cambier J (2004) B cell antigen receptor signaling 101. Mol Immunol 41:599–613CrossRefPubMedGoogle Scholar
  24. 24.
    Smith KG, Tarlinton DM, Doody GM, Hibbs ML, Fearon DT (1998) Inhibition of the B cell by CD22: a requirement for Lyn. J Exp Med 187:807–811CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gross AJ, Lyandres JR, Panigrahi AK, Prak ETL, DeFranco AL (2009) Developmental acquisition of the Lyn-CD22-SHP-1 inhibitory pathway promotes B cell tolerance. J Immunol 182:5382–5392CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A et al (2013) 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League Against Rheumatism Collaborative Initiative: ACR/EULAR classification criteria for SSc. Arthritis Rheum 65:2737–2747CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Karampetsou MP, Andonopoulos AP, Liossis S-NC (2011) Treatment with TNFα blockers induces phenotypical and functional aberrations in peripheral B cells. Clin Immunol 140:8–17CrossRefPubMedGoogle Scholar
  28. 28.
    Doody GM, Justement LB, Delibrias CC, Matthews RJ, Lin J, Thomas ML et al (1995) A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 269:242–244CrossRefPubMedGoogle Scholar
  29. 29.
    O’Keefe TL, Williams GT, Batista FD, Neuberger MS (1999) Deficiency in CD22, a B cell-specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J Exp Med 189:1307–1313CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Soto L, Ferrier A, Aravena O, Fonseca E, Berendsen J, Biere A et al (2015) Systemic sclerosis patients present alterations in the expression of molecules involved in B-cell regulation. Front Immunol 6:496CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hitomi Y, Tsuchiya N, Hasegawa M, Fujimoto M, Takehara K, Tokunaga K et al (2007) Association of CD22 gene polymorphism with susceptibility to limited cutaneous systemic sclerosis. Tissue Antigens 69:242–249CrossRefPubMedGoogle Scholar
  32. 32.
    Odaka M, Hasegawa M, Hamaguchi Y, Ishiura N, Kumada S, Matsushita T et al (2010) Autoantibody-mediated regulation of B cell responses by functional anti-CD22 autoantibodies in patients with systemic sclerosis. Clin Exp Immunol 159:176–184CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Liossis SN, Solomou EE, Dimopoulos MA, Panayiotidis P, Mavrikakis MM, Sfikakis PP (2001) B-cell kinase lyn deficiency in patients with systemic lupus erythematosus. J Investig Med 49:157–165CrossRefPubMedGoogle Scholar
  34. 34.
    Clowse MEB, Wallace DJ, Furie RA, Petri MA, Pike MC, Leszczyński P et al (2017) Efficacy and safety of epratuzumab in moderately to severely active systemic lupus erythematosus: results from two phase III randomized, double-blind, placebo-controlled trials. Arthritis Rheumatol 69:362–375CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lumb S, Fleischer SJ, Wiedemann A, Daridon C, Maloney A, Shock A et al (2016) Engagement of CD22 on B cells with the monoclonal antibody epratuzumab stimulates the phosphorylation of upstream inhibitory signals of the B cell receptor. J Cell Commun Signal 10:143–151CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sieger N, Fleischer SJ, Mei HE, Reiter K, Shock A, Burmester GR et al (2013) CD22 ligation inhibits downstream B cell receptor signaling and Ca(2+) flux upon activation. Arthritis Rheum 65:770–779CrossRefPubMedGoogle Scholar
  37. 37.
    Giltiay NV, Shu GL, Shock A, Clark EA (2017) Targeting CD22 with the monoclonal antibody epratuzumab modulates human B-cell maturation and cytokine production in response to toll-like receptor 7 (TLR7) and B-cell receptor (BCR) signaling. Arthritis Res Ther 19:91CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    McGonagle D, Tan AL, Madden J, Rawstron AC, Rehman A, Emery P et al (2008) Successful treatment of resistant scleroderma-associated interstitial lung disease with rituximab. Rheumatology 47:552–553CrossRefPubMedGoogle Scholar
  39. 39.
    Lafyatis R, Kissin E, York M, Farina G, Viger K, Fritzler MJ et al (2009) B cell depletion with rituximab in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheum 60:578–583CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Daoussis D, Liossis S-NC, Tsamandas AC, Kalogeropoulou C, Kazantzi A, Sirinian C et al (2010) Experience with rituximab in scleroderma: results from a 1-year, proof-of-principle study. Rheumatology 49:271–280CrossRefPubMedGoogle Scholar
  41. 41.
    Bosello S, De Santis M, Lama G, Spanò C, Angelucci C, Tolusso B et al (2010) B cell depletion in diffuse progressive systemic sclerosis: safety, skin score modification and IL-6 modulation in an up to thirty-six months follow-up open-label trial. Arthritis Res Ther 12:R54CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Smith V, Van Praet JT, Vandooren B, Van der Cruyssen B, Naeyaert JM, Decuman S et al (2010) Rituximab in diffuse cutaneous systemic sclerosis: an open-label clinical and histopathological study. Ann Rheum Dis 69:193–197CrossRefPubMedGoogle Scholar
  43. 43.
    Keir GJ, Maher TM, Ming D, Abdullah R, de Lauretis A, Wickremasinghe M et al (2014) Rituximab in severe, treatment-refractory interstitial lung disease. Respirology 19:353–359CrossRefPubMedGoogle Scholar
  44. 44.
    Jordan S, Distler JHW, Maurer B, Huscher D, Laar JM van, Allanore Y et al (2015) Effects and safety of rituximab in systemic sclerosis: an analysis from the European Scleroderma Trial and Research (EUSTAR) group. Ann Rheum Dis 74:1188–1194CrossRefPubMedGoogle Scholar
  45. 45.
    Daoussis D, Melissaropoulos K, Sakellaropoulos G, Antonopoulos I, Markatseli TE, Simopoulou T et al (2017) A multicenter, open-label, comparative study of B-cell depletion therapy with rituximab for systemic sclerosis-associated interstitial lung disease. Semin Arthritis Rheum 46:625–631CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Internal Medicine, Department of RheumatologyAgios Andreas General HospitalPatrasGreece
  2. 2.Division of Internal Medicine, Department of Rheumatology, Patras University HospitalUniversity of Patras Medical SchoolPatrasGreece

Personalised recommendations