Rheumatology International

, Volume 38, Issue 8, pp 1333–1338 | Cite as

The role of genetics and epigenetics in rheumatic diseases: are they really a target to be aimed at?

  • Masaru KatoEmail author
  • Shinsuke Yasuda
  • Tatsuya Atsumi
Expert Opinion


To date, numerous genetic and epigenetic studies have been performed and provided a crucial step forward in our understanding of the pathogenesis of rheumatic diseases. However, most of the recent advances in the treatment of rheumatic diseases including biological therapies are not based on or even discrepant from these genetic and epigenetic findings. For example, tumor necrosis factor inhibitors are quite successful in the treatment of rheumatoid arthritis (RA), Behçet’s disease (BD), ankylosing spondylitis (AS) and psoriatic arthritis (PsA) but not in that of systemic lupus erythematosus (SLE), systemic sclerosis (SSc), Sjögren’s syndrome (SS) and antineutrophil cytoplasmic antibody-associated vasculitis (AAV), conversely, RA shares genetic backgrounds more with SLE, SSc, SS and AAV than BD, AS and PsA. In this review, we briefly highlight the findings from recent genetic and epigenetic studies and discuss what needs to be studied to provide a novel, more efficacious management of rheumatic diseases.


Rheumatic diseases Genetics GWAS Epigenetics 


Author contributions

MK wrote the manuscript. SY and TA critically reviewed and revised the manuscript.

Compliance with ethical standards

Conflict of interest

Author MK declares that he has no conflict of interest. Author SY declares that he has no conflict of interest. Author TA declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Generali E, Ceribelli A, Stazi MA, Selmi C (2017) Lessons learned from twins in autoimmune and chronic inflammatory diseases. J Autoimmun 83:51–61CrossRefGoogle Scholar
  2. 2.
    Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K et al (2014) Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506(7488):376–381CrossRefGoogle Scholar
  3. 3.
    Wen L, Zhu C, Zhu Z, Yang C, Zheng X, Liu L et al (2018) Exome-wide association study identifies four novel loci for systemic lupus erythematosus in Han Chinese population. Ann Rheum Dis 77(3):417–422CrossRefGoogle Scholar
  4. 4.
    Terao C, Kawaguchi T, Dieude P, Varga J, Kuwana M, Hudson M et al (2017) Transethnic meta-analysis identifies GSDMA and PRDM1 as susceptibility genes to systemic sclerosis. Ann Rheum Dis 76(6):1150–1158CrossRefGoogle Scholar
  5. 5.
    Lessard CJ, Li H, Adrianto I, Ice JA, Rasmussen A, Grundahl KM et al (2013) Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjogren’s syndrome. Nat Genet 45(11):1284–1292CrossRefGoogle Scholar
  6. 6.
    Merkel PA, Xie G, Monach PA, Ji X, Ciavatta DJ, Byun J et al (2017) Identification of functional and expression polymorphisms associated with risk for antineutrophil cytoplasmic autoantibody-associated vasculitis. Arthritis Rheumatol 69(5):1054–1066CrossRefGoogle Scholar
  7. 7.
    Takeuchi M, Mizuki N, Meguro A, Ombrello MJ, Kirino Y, Satorius C et al (2017) Dense genotyping of immune-related loci implicates host responses to microbial exposure in Behcet’s disease susceptibility. Nat Genet 49(3):438–443CrossRefGoogle Scholar
  8. 8.
    International Genetics of Ankylosing Spondylitis C, Cortes A, Hadler J, Pointon JP, Robinson PC, Karaderi T et al (2013) Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet 45(7):730–738CrossRefGoogle Scholar
  9. 9.
    Stuart PE, Nair RP, Tsoi LC, Tejasvi T, Das S, Kang HM et al (2015) Genome-wide association analysis of psoriatic arthritis and cutaneous psoriasis reveals differences in their genetic architecture. Am J Hum Genet 97(6):816–836CrossRefGoogle Scholar
  10. 10.
    Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M et al (2003) Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 34(4):395–402CrossRefGoogle Scholar
  11. 11.
    Kirino Y, Zhou Q, Ishigatsubo Y, Mizuki N, Tugal-Tutkun I, Seyahi E et al (2013) Targeted resequencing implicates the familial Mediterranean fever gene MEFV and the toll-like receptor 4 gene TLR4 in Behcet disease. Proc Natl Acad Sci USA 110(20):8134–8139CrossRefGoogle Scholar
  12. 12.
    Adrianto I, Wen F, Templeton A, Wiley G, King JB, Lessard CJ et al (2011) Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nat Genet 43(3):253–258CrossRefGoogle Scholar
  13. 13.
    Padyukov L, Seielstad M, Ong RT, Ding B, Ronnelid J, Seddighzadeh M et al (2011) A genome-wide association study suggests contrasting associations in ACPA-positive versus ACPA-negative rheumatoid arthritis. Ann Rheum Dis 70(2):259–265CrossRefGoogle Scholar
  14. 14.
    Surolia I, Pirnie SP, Chellappa V, Taylor KN, Cariappa A, Moya J et al (2010) Functionally defective germline variants of sialic acid acetylesterase in autoimmunity. Nature 466(7303):243–247CrossRefGoogle Scholar
  15. 15.
    Jeffries MA, Dozmorov M, Tang Y, Merrill JT, Wren JD, Sawalha AH (2011) Genome-wide DNA methylation patterns in CD4 + T cells from patients with systemic lupus erythematosus. Epigenetics 6(5):593–601CrossRefGoogle Scholar
  16. 16.
    Quddus J, Johnson KJ, Gavalchin J, Amento EP, Chrisp CE, Yung RL et al (1993) Treating activated CD4 + T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J Clin Invest 92(1):38–53CrossRefGoogle Scholar
  17. 17.
    Lu Q, Wu A, Richardson BC (2005) Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J Immunol 174(10):6212–6219CrossRefGoogle Scholar
  18. 18.
    Lu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B (2007) Demethylation of CD40LG on the inactive X in T cells from women with lupus. J Immunol 179(9):6352–6358CrossRefGoogle Scholar
  19. 19.
    Deng C, Kaplan MJ, Yang J, Ray D, Zhang Z, McCune WJ et al (2001) Decreased Ras-mitogen-activated protein kinase signaling may cause DNA hypomethylation in T lymphocytes from lupus patients. Arthritis Rheum 44(2):397–407CrossRefGoogle Scholar
  20. 20.
    Yasuda S, Stevens RL, Terada T, Takeda M, Hashimoto T, Fukae J et al (2007) Defective expression of Ras guanyl nucleotide-releasing protein 1 in a subset of patients with systemic lupus erythematosus. J Immunol 179(7):4890–4900CrossRefGoogle Scholar
  21. 21.
    Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X et al (2010) MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4 + T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 184(12):6773–6781CrossRefGoogle Scholar
  22. 22.
    Zhao S, Wang Y, Liang Y, Zhao M, Long H, Ding S et al (2011) MicroRNA-126 regulates DNA methylation in CD4 + T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum 63(5):1376–1386CrossRefGoogle Scholar
  23. 23.
    Glossop JR, Emes RD, Nixon NB, Packham JC, Fryer AA, Mattey DL et al (2016) Genome-wide profiling in treatment-naive early rheumatoid arthritis reveals DNA methylome changes in T and B lymphocytes. Epigenomics 8(2):209–224CrossRefGoogle Scholar
  24. 24.
    Ding W, Pu W, Wang L, Jiang S, Zhou X, Tu W et al (2017) Genome-wide DNA methylation analysis in systemic sclerosis reveals hypomethylation of interferon-associated genes in CD4(+) and CD8(+) T cells. J Invest Dermatol.
  25. 25.
    Altorok N, Coit P, Hughes T, Koelsch KA, Stone DU, Rasmussen A et al (2014) Genome-wide DNA methylation patterns in naive CD4 + T cells from patients with primary Sjogren’s syndrome. Arthritis Rheumatol 66(3):731–739CrossRefGoogle Scholar
  26. 26.
    Karouzakis E, Gay RE, Michel BA, Gay S, Neidhart M (2009) DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 60(12):3613–3622CrossRefGoogle Scholar
  27. 27.
    Altorok N, Tsou PS, Coit P, Khanna D, Sawalha AH (2015) Genome-wide DNA methylation analysis in dermal fibroblasts from patients with diffuse and limited systemic sclerosis reveals common and subset-specific DNA methylation aberrancies. Ann Rheum Dis 74(8):1612–1620CrossRefGoogle Scholar
  28. 28.
    Charras A, Konsta OD, Le Dantec C, Bagacean C, Kapsogeorgou EK, Tzioufas AG et al (2017) Cell-specific epigenome-wide DNA methylation profile in long-term cultured minor salivary gland epithelial cells from patients with Sjogren’s syndrome. Ann Rheum Dis 76(3):625–628CrossRefGoogle Scholar
  29. 29.
    Huber LC, Brock M, Hemmatazad H, Giger OT, Moritz F, Trenkmann M et al (2007) Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients. Arthritis Rheum 56(4):1087–1093CrossRefGoogle Scholar
  30. 30.
    Angiolilli C, Kabala PA, Grabiec AM, Van Baarsen IM, Ferguson BS, Garcia S et al (2017) Histone deacetylase 3 regulates the inflammatory gene expression programme of rheumatoid arthritis fibroblast-like synoviocytes. Ann Rheum Dis 76(1):277–285CrossRefGoogle Scholar
  31. 31.
    Joosten LA, Leoni F, Meghji S, Mascagni P (2011) Inhibition of HDAC activity by ITF2357 ameliorates joint inflammation and prevents cartilage and bone destruction in experimental arthritis. Mol Med 17(5–6):391–396PubMedPubMedCentralGoogle Scholar
  32. 32.
    Vojinovic J, Damjanov N, D’Urzo C, Furlan A, Susic G, Pasic S et al (2011) Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 63(5):1452–1458CrossRefGoogle Scholar
  33. 33.
    Klein K, Kabala PA, Grabiec AM, Gay RE, Kolling C, Lin LL et al (2016) The bromodomain protein inhibitor I-BET151 suppresses expression of inflammatory genes and matrix degrading enzymes in rheumatoid arthritis synovial fibroblasts. Ann Rheum Dis 75(2):422–429CrossRefGoogle Scholar
  34. 34.
    Mele DA, Salmeron A, Ghosh S, Huang HR, Bryant BM, Lora JM (2013) BET bromodomain inhibition suppresses TH17-mediated pathology. J Exp Med 210(11):2181–2190CrossRefGoogle Scholar
  35. 35.
    de Andres MC, Perez-Pampin E, Calaza M, Santaclara FJ, Ortea I, Gomez-Reino JJ et al (2015) Assessment of global DNA methylation in peripheral blood cell subpopulations of early rheumatoid arthritis before and after methotrexate. Arthritis Res Ther 17:233CrossRefGoogle Scholar
  36. 36.
    Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A et al (2013) Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 31(2):142–147CrossRefGoogle Scholar
  37. 37.
    Gorelik GJ, Yarlagadda S, Patel DR, Richardson BC (2012) Protein kinase Cdelta oxidation contributes to ERK inactivation in lupus T cells. Arthritis Rheum 64(9):2964–2974CrossRefGoogle Scholar
  38. 38.
    Sunahori K, Nagpal K, Hedrich CM, Mizui M, Fitzgerald LM, Tsokos GC (2013) The catalytic subunit of protein phosphatase 2A (PP2Ac) promotes DNA hypomethylation by suppressing the phosphorylated mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/phosphorylated ERK/DNMT1 protein pathway in T-cells from controls and systemic lupus erythematosus patients. J Biol Chem 288(30):21936–21944CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan

Personalised recommendations