Skip to main content

Advertisement

Log in

Evaluation of ITGB2 (CD18) and SELL (CD62L) genes expression and methylation of ITGB2 promoter region in patients with systemic sclerosis

  • Genes and Disease
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Systemic sclerosis (SSc), an autoimmune disease of connective tissue, is characterized by inflammation, fibrosis, and vessel endothelial damage. Products of Integrin subunit beta 2 (ITGB2) and selectin L (SELL) genes participate in several functional pathways of immune system. The aim of this investigation was to survey the transcript level of ITGB2 and SELL genes as well as methylation status of CpG sites in promoter region of differently expressed gene in PBMCs of SSc patients. PBMCs were isolated from whole blood of 50 SSc patients and 30 healthy controls. Total RNA and DNA contents of PBMCs were extracted. Gene expression was analyzed by real-time PCR using the SYBR Green PCR Master Mix. To investigate the methylation status of CpG sites, DNA samples were treated by bisulfite, amplified through nested PCR, and sequenced through Sanger difficult sequencing method. ITGB2 gene in PBMCs of SSc patients was overexpressed significantly in comparison to healthy controls. However, no altered SELL expression was observed. Three CpG sites of 12, 13 and 14 were significantly hypomethylated in patients group, despite overall methylation status of ITGB2 gene promoter revealed no significant difference between study groups. There was no statistically significant correlation between methylation status of ITGB2 promoter and the gene expression in patients. Regarding to lack of correlation of increased expression of ITGB2 with its promoter hypomethylation in SSc patients, our study suggests that upregulation of ITGB2 in PBMCs from SSc patients is probably due to another mechanism other than methylation alteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Perosa F, Prete M, Di Lernia G, Ostuni C, Favoino E, Valentini G (2016) Anti-centromere protein A antibodies in systemic sclerosis: significance and origin. Autoimmun Rev 15:102–109. https://doi.org/10.1016/j.autrev.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  2. Denton C (2015) Systemic sclerosis: from pathogenesis to targeted therapy. Clin Exp Rheumatol 33:S3-S7

    Google Scholar 

  3. Hutterer E, Asslaber D, Caldana C, Krenn PW, Zucchetto A, Gattei V, Greil R, Hartmann TN (2015) CD18 (ITGB2) expression in chronic lymphocytic leukaemia is regulated by DNA methylation-dependent and-independent mechanisms. Br J Haematol 169:286–289. https://doi.org/10.1111/bjh.13188

    Article  CAS  PubMed  Google Scholar 

  4. Shimada Y, Hasegawa M, Takehara K, Sato S (2001) Elevated serum l-selectin levels and decreased l-selectin expression on CD8+ lymphocytes in systemic sclerosis. Clin Exp Immunol 124:474–479. https://doi.org/10.1046/j.1365-2249.2001.01514.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miao C-g, Xiong Y-y, Yu H, Zhang X-l, Qin M-s, Song T-w, Du C-l (2015) Critical roles of microRNAs in the pathogenesis of systemic sclerosis: new advances, challenges and potential directions. Int Immunopharmacol 28:626–633. https://doi.org/10.1016/j.intimp.2015.07.042

    Article  CAS  PubMed  Google Scholar 

  6. Karimizadeh E, Gharibdoost F, Motamed N, Jafarinejad-Farsangi S, Jamshidi A, Mahmoudi M (2015) c-Abl silencing reduced the inhibitory effects of TGF-β1 on apoptosis in systemic sclerosis dermal fibroblasts. Mol Cell Biochem 405:169–176. https://doi.org/10.1007/s11010-015-2408-0

    Article  CAS  PubMed  Google Scholar 

  7. Karimizadeh E, Motamed N, Mahmoudi M, Jafarinejad-Farsangi S, Jamshidi A, Faridani H, Gharibdoost F (2015) Attenuation of fibrosis with selective inhibition of c-Abl by siRNA in systemic sclerosis dermal fibroblasts. Arch Dermatol Res 307:135–142. https://doi.org/10.1007/s00403-014-1532-0

    Article  CAS  PubMed  Google Scholar 

  8. Jafarinejad-Farsangi S, Farazmand A, Gharibdoost F, Karimizadeh E, Noorbakhsh F, Faridani H, Mahmoudi M, Jamshidi AR (2016) Inhibition of MicroRNA-21 induces apoptosis in dermal fibroblasts of patients with systemic sclerosis. Int J Dermatol 55:1259–1267. https://doi.org/10.1111/ijd.13308

    Article  CAS  PubMed  Google Scholar 

  9. Yousefi B, Mahmoudi M, Sarafnejad A, Karimizadeh E, Farhadi E, Jamshidi AR, Kavosi H, Aslani S, Gharibdoost F (2017) Downregulation of Aquaporin3 in systemic sclerosis dermal fibroblasts. Iran J Allergy Asthma Immunol 16:228

    PubMed  Google Scholar 

  10. Almasi S, Aslani S, Poormoghim H, Jamshidi A, Poursani S, Mahmoudi M (2016) Gene expression profiling of toll-like receptor 4 and 5 in peripheral blood mononuclear cells in rheumatic disorders: ankylosing spondylitis and rheumatoid arthritis. Iran J Allergy Asthma Immunol 15:87

    PubMed  Google Scholar 

  11. Jafarinejad-Farsangi S, Farazmand A, Mahmoudi M, Gharibdoost F, Karimizadeh E, Noorbakhsh F, Faridani H, Jamshidi AR (2015) MicroRNA-29a induces apoptosis via increasing the Bax: Bcl-2 ratio in dermal fibroblasts of patients with systemic sclerosis. Autoimmunity 48:369–378. https://doi.org/10.3109/08916934.2015.1030616

    Article  PubMed  Google Scholar 

  12. Ferri C, Sebastiani M, Monaco AL, Iudici M, Giuggioli D, Furini F, Manfredi A, Cuomo G, Spinella A, Colaci M (2014) Systemic sclerosis evolution of disease pathomorphosis and survival. Our experience on Italian patients’ population and review of the literature. Autoimmun Rev 13:1026–1034. https://doi.org/10.1016/j.autrev.2014.08.029

    Article  PubMed  Google Scholar 

  13. Li Y, Huang J, Guo M, Zuo X (2015) MicroRNAs regulating signaling pathways: potential biomarkers in systemic sclerosis. Genom Proteom Bioinform 13:234–241. https://doi.org/10.1016/j.gpb.2015.07.001

    Article  Google Scholar 

  14. Mahmoudi M, Fallahian F, Sobhani S, Ghoroghi S, Jamshidi A, Poursani S, Dolati M, Hosseinpour Z, Gharibdoost F (2017) Analysis of killer cell immunoglobulin-like receptors (KIRs) and their HLA ligand genes polymorphisms in Iranian patients with systemic sclerosis. Clin Rheumatol 36:853–862. https://doi.org/10.1007/s10067-016-3526-0

    Article  PubMed  Google Scholar 

  15. Abtahi S, Farazmand A, Mahmoudi M, Ashraf-Ganjouei A, Javinani A, Nazari B, Kavosi H, Amirzargar A, Jamshidi A, Gharibdoost F (2015) IL-1A rs1800587, IL-1B rs1143634 and IL-1R1 rs2234650 polymorphisms in Iranian patients with systemic sclerosis. Int J Immunogenet 42:423–427. https://doi.org/10.1111/iji.12212

    Article  CAS  PubMed  Google Scholar 

  16. Luo Y, Wang Y, Shu Y, Lu Q, Xiao R (2015) Epigenetic mechanisms: an emerging role in pathogenesis and its therapeutic potential in systemic sclerosis. Int J Biochem Cell Biol 67:92–100. https://doi.org/10.1016/j.biocel.2015.05.023

    Article  CAS  PubMed  Google Scholar 

  17. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492. https://doi.org/10.1038/nrg3230

    Article  CAS  PubMed  Google Scholar 

  18. Quintero-Ronderos P, Montoya-Ortiz G (2012) Epigenetics and autoimmune diseases. Autoimmun Dis. https://doi.org/10.1155/2012/593720

    Google Scholar 

  19. Estécio MR, Issa J-PJ (2011) Dissecting DNA hypermethylation in cancer. FEBS Lett 585:2078–2086. https://doi.org/10.1016/j.febslet.2010.12.001

    Article  PubMed  Google Scholar 

  20. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935. https://doi.org/10.1126/science.1170116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tan F, Zhou X, Mayes M, Gourh P, Guo X, Marcum C, Jin L, Arnett F (2006) Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology 45:694–702. https://doi.org/10.1093/rheumatology/kei244

    Article  CAS  PubMed  Google Scholar 

  22. Yassaee VR, Hashemi-Gorji F, Boosaliki S, Parvaneh N (2016) Mutation spectra of the ITGB2 gene in Iranian families with leukocyte adhesion deficiency type 1. Hum Immunol 77:191–195. https://doi.org/10.1016/j.humimm.2015.11.019

    Article  CAS  PubMed  Google Scholar 

  23. Nasiri Kalmarzi M (2015) Investigation of ITGB2 gene in 12 new cases of leukocyte adhesion deficiency-type I Revealed four novel mutations from Iran. Arch Iran Med 18:760

    PubMed  Google Scholar 

  24. Stavarachi M, Apostol P, CIMPONERIU D, Toma M, Butoianu N, and GAVRILĂ L (2009) Possible association between l-selectin gene P213S polymorphism and respiratory complications of childhood spinal muscular atrophy patients. Rom Biotechnol Lett 14:4119–4122

    CAS  Google Scholar 

  25. Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, Matucci-Cerinic M, Naden RP, Medsger TA, Carreira PE (2013) 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum 65:2737–2747. https://doi.org/10.1002/art.38098

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat protoc 3:1101. https://doi.org/10.1038/nprot.2008.73

    Article  CAS  PubMed  Google Scholar 

  27. Sambrook J, Russell DW (2006) Purification of nucleic acids by extraction with phenol: chloroform. Cold Spring Harb Protoc 2006:pdb. https://doi.org/10.1101/pdb.prot4455

    Google Scholar 

  28. Patterson K, Molloy L, Qu W, Clark S (2011) DNA methylation: bisulphite modification and analysis. J Vis Exp. https://doi.org/10.3791/3170

    Google Scholar 

  29. Aslani S, Mahmoudi M, Garshasbi M, Jamshidi AR, Karami J, Nicknam MH (2016) Evaluation of DNMT1 gene expression profile and methylation of its promoter region in patients with ankylosing spondylitis. Clin Rheumatol 35:2723–2731. https://doi.org/10.1007/s10067-016-3403-x

    Article  PubMed  Google Scholar 

  30. Karami J, Mahmoudi M, Amirzargar A, Gharshasbi M, Jamshidi A, Aslani S, Nicknam M (2017) Promoter hypermethylation of BCL11B gene correlates with downregulation of gene transcription in ankylosing spondylitis patients. Genes Immun 18:170–175. https://doi.org/10.1038/gene.2017.17

    Article  CAS  PubMed  Google Scholar 

  31. Rezaei R, Mahmoudi M, Gharibdoost F, Kavosi H, Dashti N, Imeni V, Jamshidi A, Aslani S, Mostafaei S, Vodjgani M (2017) IRF7 gene expression profile and methylation of its promoter region in patients with systemic sclerosis. Int J Rheum Dis 20:1551–1561. https://doi.org/10.1111/1756-185X.13175

    Article  CAS  PubMed  Google Scholar 

  32. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Gen 7:21–33. https://doi.org/10.1038/nrg1748

    Article  CAS  Google Scholar 

  33. Aslani S, Mahmoudi M, Karami J, Jamshidi AR, Malekshahi Z, Nicknam MH (2016) Epigenetic alterations underlying autoimmune diseases. Autoimmunity 49:69–83. https://doi.org/10.3109/08916934.2015.1134511

    Article  CAS  PubMed  Google Scholar 

  34. Aslani S, Jafari N, Javan MR, Karami J, Ahmadi M, Jafarnejad M (2017) Epigenetic modifications and therapy in multiple sclerosis. NeuroMol Med 19:11–23. https://doi.org/10.1007/s12017-016-8422-x

    Article  CAS  Google Scholar 

  35. Mahmoudi M, Aslani S, Nicknam MH, Karami J, Jamshidi AR (2017) New insights toward the pathogenesis of ankylosing spondylitis; genetic variations and epigenetic modifications. Mod Rheumatol 27:198–209. https://doi.org/10.1080/14397595.2016.1206174

    Article  PubMed  Google Scholar 

  36. Ahmadi M, Gharibi T, Dolati S, Rostamzadeh D, Aslani S, Baradaran B, Younesi V, Yousefi M (2017) Epigenetic modifications and epigenetic based medication implementations of autoimmune diseases. Biomed Pharmacother 87:596–608. https://doi.org/10.1016/j.biopha.2016.12.072

    Article  CAS  PubMed  Google Scholar 

  37. Foma AM, Aslani S, Karami J, Jamshidi A, Mahmoudi M (2017) Epigenetic involvement in etiopathogenesis and implications in treatment of systemic lupus erythematous. Inflamm Res. https://doi.org/10.1007/s00011-017-1082-y

    PubMed  Google Scholar 

  38. Varga J, Abraham D (2007) Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 117:557–567. https://doi.org/10.1172/JCI31139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Altorok N, Almeshal N, Wang Y, Kahaleh B (2014) Epigenetics, the holy grail in the pathogenesis of systemic sclerosis. Rheumatology 54:1759–1770. https://doi.org/10.1093/rheumatology/keu155

    Article  PubMed  Google Scholar 

  40. Altorok N, Tsou P-S, Coit P, Khanna D, Sawalha AH (2014) Genome-wide DNA methylation analysis in dermal fibroblasts from patients with diffuse and limited systemic sclerosis reveals common and subset-specific DNA methylation aberrancies. Ann Rheum Dis 74:1612–1620. https://doi.org/10.1136/annrheumdis-2014-205303

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tan F, Zhou X, Mayes M, Gourh P, Guo X, Marcum C, Jin L, Arnett F Jr. (2006) Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology 45:694–702. https://doi.org/10.1093/rheumatology/kei244

    Article  CAS  PubMed  Google Scholar 

  42. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484. https://doi.org/10.1038/nrg3230

    Article  CAS  PubMed  Google Scholar 

  43. Sanders YY, Pardo A, Selman M, Nuovo GJ, Tollefsbol TO, Siegal GP, Hagood JS (2008) Thy-1 promoter hypermethylation: a novel epigenetic pathogenic mechanism in pulmonary fibrosis. Am J Respir Cell Mol Biol 39:610–618. https://doi.org/10.1165/rcmb.2007-0322OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18:1028–1040. https://doi.org/10.1038/nm.2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bird AP, Wolffe AP (1999) Methylation-induced repression—belts, braces, and chromatin. Cell 99:451–454. https://doi.org/10.1016/S0092-8674(00)81532-9

    Article  CAS  PubMed  Google Scholar 

  46. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45. https://doi.org/10.1038/47412

    Article  CAS  PubMed  Google Scholar 

  47. Stancheva I (2005) Caught in conspiracy: cooperation between DNA methylation and histone H3K9 methylation in the establishment and maintenance of heterochromatin. Biochem Cell Biol 83:385–395. https://doi.org/10.1139/o05-043

    Article  CAS  PubMed  Google Scholar 

  48. Mizuno S-i, Chijiwa T, Okamura T, Akashi K, Fukumaki Y, Niho Y, Sasaki H (2001) Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood 97:1172–1179. https://doi.org/10.1182/blood.V97.5.1172

    Article  CAS  PubMed  Google Scholar 

  49. Fujita N, Takebayashi S-i, Okumura K, Kudo S, Chiba T, Saya H, Nakao M (1999) Methylation-mediated transcriptional silencing in euchromatin by methyl-CpG binding protein MBD1 isoforms. Mol Cell Biol 19:6415–6426. https://doi.org/10.1128/MCB.19.9.6415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gregory RI, Randall TE, Johnson CA, Khosla S, Hatada I, O’Neill LP, Turner BM, Feil R (2001) DNA methylation is linked to deacetylation of histone H3, but not H4, on the imprinted genes Snrpnand U2af1-rs1. Mol Cell Biol 21:5426–5436. https://doi.org/10.1128/MCB.21.16.5426-5436.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lunyak VV, Burgess R, Prefontaine GG, Nelson C, Sze S-H, Chenoweth J, Schwartz P, Pevzner PA, Glass C, Mandel G (2002) Corepressor-dependent silencing of chromosomal regions encoding neuronal genes. Science 298:1747–1752. https://doi.org/10.1126/science.1076469

    Article  CAS  PubMed  Google Scholar 

  52. Lande-Diner L, Zhang J, Ben-Porath I, Amariglio N, Keshet I, Hecht M, Azuara V, Fisher AG, Rechavi G, Cedar H (2007) Role of DNA methylation in stable gene repression. J Biol Chem 282:12194–12200. https://doi.org/10.1074/jbc.M607838200

  53. Lawson BR, Eleftheriadis T, Tardif V, Gonzalez-Quintial R, Baccala R, Kono DH, Theofilopoulos AN (2012) Transmethylation in immunity and autoimmunity. Clin Immunol 143:8–21. https://doi.org/10.1016/j.clim.2011.10.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are deeply grateful of the individuals who contributed to the accomplishment of this study.

Funding

This study was funded by the Deputy of Research, Tehran University of Medical Sciences (Grant no. 95-01-30-31356).

Author information

Authors and Affiliations

Authors

Contributions

ND: email: naviddashtigoolahgoolah@yahoo.com. Performed the experiments and participated in manuscript drafting. MM: email: mahmoudim@tums.ac.ir. Developed the main idea and red the manuscript critically. FG: email: gharibdoost@sina.tums.ac.ir. Provided the financial support of the project. HK: email: h-kavosi@sina.tums.ac.ir. Examined the SSc patients. RR: email: ramin.rezaei25@gmail.com. Participated in performing the experiments. VI: email: vahide.amini@yahoo.com. Participated in questionnaire filling of the patients and conducting experiments. AJ: email: jamshidia@tums.ac.ir. Provided the financial support of the project. SA: email: s-aslani@razi.tums.ac.ir. Participated in manuscript writing. SM: email: mostafa.shayan@modares.ac.ir. Performed the statistical analysis. MV: email: vojganim@sina.tums.ac.ir. Provided the financial support of the project.

Corresponding authors

Correspondence to Farhad Gharibdoost or Mohammad Vodjgani.

Ethics declarations

Ethical approval

All participants in the study were treated in agreement with the ethical standards of the Ethics Committee at Tehran University of Medical Sciences and with the revised Helsinki Declaration in 2000.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

296_2017_3915_MOESM1_ESM.tif

Correlation of mRNA expression level of ITGB2 with methylation percentage in (A) SSc patients, (B) dSSc patients, and (C) lSSc patients (rho; Spearman’s correlation coefficient) (TIF 51 KB)

296_2017_3915_MOESM2_ESM.tif

Scatter plots demonstrating the correlation of Rodnan scores with mRNA expression of ITGB2 (A) and methylation level of ITGB2 promoter in SSc patients. Rodnan score correlation with mRNA expression and promoter methylation of ITGB2 in dSSc patients is shown in plots C and D, respectively. Rodnan score correlation with mRNA expression and promoter methylation of ITGB2 in lSSc patients is shown in plots E and F, respectively (r; Pearson’s correlation coefficient) (TIF 186 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dashti, N., Mahmoudi, M., Gharibdoost, F. et al. Evaluation of ITGB2 (CD18) and SELL (CD62L) genes expression and methylation of ITGB2 promoter region in patients with systemic sclerosis. Rheumatol Int 38, 489–498 (2018). https://doi.org/10.1007/s00296-017-3915-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-017-3915-y

Keywords

Navigation