Skip to main content
Log in

Association between cortisol levels and pain threshold in systemic sclerosis and major depression

  • Observational Research
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Pain perception and threshold show complex interactions with the inflammatory, psychiatric and neuroendocrine stimuli. This study aims to test whether lower serum cortisol levels are associated with lower pain thresholds and higher degree of depression in systemic sclerosis (SSc) and major depression with atypical features (MD-AF) patients compared to controls. 180 female subjects (SSc = 60, MD-AF = 60, healthy controls = 60) participated in this observational, cross-sectional, parallel group study. Pressure pain threshold (PPT) was assessed in three anatomical sites: nail bed (NB), metacarpophalangeal joint (MCP) and quadriceps muscle (QDR). Depressive symptoms were evaluated using the Beck Depression Inventory (BDI) scale and morning serum cortisol levels were collected. In SSc patients, quality of life was measured through the Health Assessment Questionnaire (HAQ-DI) and the scleroderma-specific visual analogue scales (scleroderma-VAS). Lower PPT scores (NB 4.42 ± 1.6; MCP 4.66 ± 1.4; QDR 4.79 ± 1.5) were observed in SSc patients compared to both MD-AF (NB 7.33 ± 2.2; MCP 6.01 ± 1.9; QDR 6.31 ± 1.6; p < 0.005) and controls (NB 9.57 ± 2; MCP 7.9 ± 2.1 and QDR 8.43 ± 2.1; p < 0.0001), while MD-AF patients had lower PPT scores compared to controls (p < 0.0001). SSc patients had also lower serum cortisol levels compared to MD-AF patients (8.78 vs 13.6 μg/dl; p < 0.05). A direct correlation was observed between serum cortisol and PPT scores both in SSc (r 2 for NB 0.29; for MCP 0.25; for QDR 0.27) and in MD-AF (r 2 for NB 0.34; for MCP 0.25; for QDR 0.47; p < 0.05), while depressive symptoms negatively correlated with serum cortisol (r 2 for NB 0.34; for MCP 0.17; for QDR 0.15) and in MD-AF (r 2 for NB 0.19; for MCP 0.31; for QDR 0.30; p < 0.05). Among SSc patients, those with serum cortisol levels below the normal range (n = 16) had higher BDI scores (15, 6–21 vs 9, 2–15; p < 0.005), lower PPTs (NB 4 ± 1.4 vs 4.9 ± 0.9; MCP 4.1 ± 0.8 vs 4.8 ± 0.9; QDR 4.1 ± 1.2 vs 5 ± 0.9; p < 0.005) and higher HAQ-DI (1.25, 0.25–2 vs 0.75, 0–1.25; p < 0.05) and scleroderma-VAS scores (VAS overall severity 7, 5.5–9.5 vs 4.5, 2.5–6; p < 0.05). The effect of cortisol serum levels upon pain mechanism, in chronic inflammatory conditions warrants longitudinal studies to detect treatable variations in pain thresholds, depressive symptoms and to improve quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Almeida C, Almeida I, Vasconcelos C (2015) Quality of life in systemic sclerosis. Autoimmun Rev 14:1087–1096

    Article  PubMed  Google Scholar 

  2. Hudson M, Thombs BD, Steele R, Panopalis P, Newton E, Baron M (2009) Canadian Scleroderma Research Group. Health-related quality of life in systemic sclerosis: a systematic review. Arthritis Rheumatol 61:1112–1120

    Article  Google Scholar 

  3. Georges C, Chassany O, Toledano C, Mouthon L, Tiev K, Meyer O et al (2006) Impact of pain in health related quality of life of patients with systemic sclerosis. Rheumatol (Oxf) 45:1298–1302

    Article  CAS  Google Scholar 

  4. Thombs BD, Bassel M, McGuire L, Smith MT, Hudson M, Haythornthwaite JA (2008) A systematic comparison of fatigue levels in systemic sclerosis with general population, cancer and rheumatic disease samples. Rheumatol (Oxf) 47:1559–1563

    Article  CAS  Google Scholar 

  5. Nguyen C, Ranque B, Baubet T, Bérezné A, Mestre-Stanislas C, Rannou F et al (2014) Groupe Français de Recherche sur la Sclérodermie. Clinical, functional and health-related quality of life correlates of clinically significant symptoms of anxiety and depression in patients with systemic sclerosis: a cross-sectional survey. PLoS One 28(9):e904849

    Google Scholar 

  6. Mura G, Bhat KM, Pisano A, Licci G, Carta M (2012) Psychiatric symptoms and quality of life in systemic sclerosis. Clin Pract Epidemiol Ment Health 8:30–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aloisi AM (2003) Gonadal hormones and sex differences in pain reactivity. Clin J Pain 19:168–174

    Article  PubMed  Google Scholar 

  8. McEwen BS, Kalia M (2010) The role of corticosteroids and stress in chronic pain conditions. Metabolism 59:S9–S15

    Article  CAS  PubMed  Google Scholar 

  9. Muhtz C, Rodriguez-Raecke R, Hinkelmann K, Moeller-Bertram T, Kiefer F, Wiedemann K et al (2013) Cortisol response to experimental pain in patients with chronic low back pain and patients with major depression. Pain Med 14:498–503

    Article  PubMed  Google Scholar 

  10. Spies CM, Straub RH, Cutolo M, Buttgereit F (2014) Circadian rhythms in rheumatology—a glucocorticoid perspective. Arthritis Res Ther 13(16 Suppl 2):S3

    Article  Google Scholar 

  11. Addington JW (2000) Chronic fatigue syndrome: a dysfunction of the hypothalamic-pituitary-adrenal axis. J Chronic Fatigue Syndr 7:63–73

    Article  Google Scholar 

  12. Gur A, Cevik R, Nas K, Colpan L, Sarac S (2004) Cortisol and hypothalamic–pituitary–gonadal axis hormones in follicular-phase women with fibromyalgia and chronic fatigue syndrome and effect of depressive symptoms on these hormones. Arthritis Res Ther 6:R232–R238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tak LM, Rosmalen JG (2010) Dysfunction of stress responsive systems as a risk factor for functional somatic syndromes. J Psychosom Res 68:461–468

    Article  PubMed  Google Scholar 

  14. Gold PW (2015) The organization of the stress system and its dysregulation in depressive illness. Mol Psychiatry 20:32–47

    Article  CAS  PubMed  Google Scholar 

  15. O’Keane V, Frodl T, Dinan TG (2012) A review of atypical depression in relation to the course of depression and changes in HPA axis organization. Psychoneuroendocrinology 37:1589–1599

    Article  PubMed  Google Scholar 

  16. Singh T, Williams K (2006) Atypical depression. Psychiatry (Edgmont) 3:33–39

    Google Scholar 

  17. Anisman H, Ravindran AV, Griffiths J, Merali Z (1999) Endocrine and cytokine correlates of major depression and dysthymia with typical or atypical features. Mol Psychiatry 4:182–188

    Article  CAS  PubMed  Google Scholar 

  18. Karlović D, Serretti A, Vrkić N, Martinac M, Marčinko D (2012) Serum concentrations of CRP, IL-6, TNF-α and cortisol in major depressive disorder with melancholic or atypical features. Psychiatry Res 198:74–80

    Article  PubMed  Google Scholar 

  19. Brouwer JP, Appelhof BC, Hoogendijk WJ, Huyser J, Endert E, Zuketto C et al (2005) Thyroid and adrenal axis in major depression: a controlled study in outpatients. Eur J Endocrinol 152:185–191

    Article  CAS  PubMed  Google Scholar 

  20. van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A et al (2013) 2013 classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative. Ann Rheumatol Dis 72:1747–1755

    Article  Google Scholar 

  21. Clements P, Lachenbruch P, Siebold J, White B, Weiner S, Martin R et al (1995) Inter and intraobserver variability of total skin thickness score (modified Rodnan TSS) in systemic sclerosis. J Rheumatol 22:1281–1285

    CAS  PubMed  Google Scholar 

  22. Beck AT, Rial WY, Rickels K (1974) Short form of depression inventory: cross-validation. Psychol Rep 34:1184–1186

    CAS  PubMed  Google Scholar 

  23. Lee YC, Chibnik LB, Lu B, Wasan AD, Edwards RR, Fossel AH et al (2009) The relationship between disease activity, sleep, psychiatric distress and pain sensitivity in rheumatoid arthritis: a cross-sectional study. Arthritis Res Ther 11:R160

    Article  PubMed  PubMed Central  Google Scholar 

  24. Walton DM, Macdermid JC, Nielson W, Teasell RW, Chiasson M, Brown L (2011) Reliability, standard error, and minimum detectable change of clinical pressure pain threshold testing in people with and without acute neck pain. J Orthop Sports Phys Ther 41:644–650

    Article  PubMed  Google Scholar 

  25. Lee YC, Lu B, Edwards RR, Wasan AD, Nassikas NJ, Clauw DJ et al. (2013) The role of sleep problems in central pain processing in rheumatoid arthritis. Arthritis Rheumatol 65:59–68

    Article  Google Scholar 

  26. Wajed J, Ejindu V, Heron C, Hermansson M, Kiely P, Sofat N (2012) Quantitative sensory testing in painful hand osteoarthritis demonstrates features of peripheral sensitisation. Int J Rheumatol 2012:703138

    PubMed  PubMed Central  Google Scholar 

  27. Pope J (2011) Measures of systemic sclerosis scleroderma: Health Assessment Questionnaire (HAQ) and Scleroderma HAQ (SHAQ), physician- and patient-rated global assessments, Symptom Burden Index (SBI), University of California, Los Angeles, Scleroderma Clinical Trials Consortium Gastrointestinal Scale (UCLA SCTC GIT) 2.0, Baseline Dyspnea Index (BDI) and Transition Dyspnea Index (TDI) (Mahler’s Index), Cambridge Pulmonary Hypertension Outcome Review (CAMPHOR), and Raynaud’s Condition Score (RCS). Arthritis Care Res (Hoboken) 63:S98–S111

    Article  Google Scholar 

  28. Normand E, Potvin S, Gaumond I, Cloutier G, Corbin JF, Marchand S (2011) Pain inhibition is deficient in chronic widespread pain but normal in major depressive disorder. J Clin Psychiatry 72:219–224

    Article  PubMed  Google Scholar 

  29. Zambito Marsala S, Pistacchi M, Tocco P, Gioulis M, Fabris F, Brigo F et al (2015) Pain perception in major depressive disorder: a neurophysiological case–control study. J Neurol Sci 357:19–21

    Article  PubMed  Google Scholar 

  30. Lautenbacher S, Spernal J, Schreiber W, Krieg JC (1999) Relationship between clinical pain complaints and pain sensitivity in patients with depression and panic disorder. Psychosom Med 61:822–827

    Article  CAS  PubMed  Google Scholar 

  31. Boettger MK, Grossmann D, Bär KJ (2013) Thresholds and perception of cold pain, heat pain, and the thermal grill illusion in patients with major depressive disorder. Psychosom Med 75:281–287

    Article  PubMed  Google Scholar 

  32. Euteneuer F, Schwarz MJ, Hennings A, Riemer S, Stapf T, Selberdinger V et al (2011) Depression, cytokines and experimental pain: evidence for sex-related association patterns. J Affect Disord 131:143–149

    Article  CAS  PubMed  Google Scholar 

  33. Neogi T, Guermazi A, Roemer F, Nevitt MC, Scholz J, Arendt-Nielsen L et al (2016) Association of joint inflammation with pain sensitization in knee osteoarthritis: the Multicenter Osteoarthritis Study. Arthritis Rheumatol 68:654–661

    Article  PubMed  PubMed Central  Google Scholar 

  34. Silverman MN, Sternberg EM (2012) Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction. Ann N Y Acad Sci 1261:55–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23:477–501

    Article  CAS  PubMed  Google Scholar 

  36. Pace TW, Miller AH (2009) Cytokines and glucocorticoid receptor signaling. Relevance to major depression. Ann N Y Acad Sci 1179:86–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Watson S, Gallagher P, Del-Estal D, Hearn A, Ferrier IN, Young AH (2002) Hypothalamic–pituitary–adrenal axis function in patients with chronic depression. Psychol Med 32:1021–1028

    Article  CAS  PubMed  Google Scholar 

  38. McEwen BS, Kalia M (2010) The role of corticosteroids and stress in chronic pain conditions. Metabolism 59:S9–S15

    Article  CAS  PubMed  Google Scholar 

  39. Paananen M, O’Sullivan P, Straker L, Beales D, Coenen P, Karppinen J et al (2015) A low cortisol response to stress is associated with musculoskeletal pain combined with increased pain sensitivity in young adults: a longitudinal cohort study. Arthritis Res Ther 10:355

    Article  Google Scholar 

  40. Kuehl LK, Michaux GP, Richter S, Schächinger H, Anton F (2010) Increased basal mechanical pain sensitivity but decreased perceptual wind-up in a human model of relative hypocortisolism. Pain 149:539–546

    Article  CAS  PubMed  Google Scholar 

  41. Steen VD, Medsger TA Jr (1998) Case–control study of corticosteroids and other drugs that either precipitate or protect from the development of scleroderma renal crisis. Arthritis Rheumatol 41:1613–1619

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in drafting the article and revising it critically for important intellectual content, and all authors approved the final version to be published. Study concept and design: GLB, FC, WNR, AB, MRAM. Acquisition of data: DSC, DSA, MRAM, AF, GM, GC. Analysis and interpretation of data: GLB, FC, GP, RZ, WNR, AB.

Corresponding author

Correspondence to Gianluca Bagnato.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagnato, G., Cordova, F., Sciortino, D. et al. Association between cortisol levels and pain threshold in systemic sclerosis and major depression. Rheumatol Int 38, 433–441 (2018). https://doi.org/10.1007/s00296-017-3866-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-017-3866-3

Keywords

Navigation