Skip to main content
Log in

Non-synonymous WNT16 polymorphisms alleles are associated with different osteoarthritis phenotypes

  • Genes and Disease
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Hereditary factors have a strong influence on osteoarthritis (OA). The Wnt pathway is involved in bone and cartilage homeostasis. Hence, we hypothesized that allelic variations of WNT16 could influence the OA phenotype. We studied 509 Caucasian patients undergoing joint replacement due to severe primary OA. Radiographs were used to classify the OA as atrophic or hypertrophic. Two nonsynonymous polymorphisms of WNT16 (rs2707466 and rs2908004) were analyzed. The association between the genotypes and the OA phenotype was analyzed by logistic regression and adjusted for age and body mass index. A genotype–phenotype association was found in the sex-stratified analysis. Thus, there was a significant difference in the genotypic frequencies of rs2707466 between hypertrophic and atrophic hip OA in males (p = 0.003), with overrepresentation of G alleles in the hypertrophic phenotype (OR 2.08; CI 1.28–3.38). An association in the same direction was observed between these alleles and the type of knee OA, with G alleles being more common in the hypertrophic than in atrophic knee phenotypes (p = 0.008; OR 1.956, CI 1.19–3.19). Similar associations were found for the rs2908004 SNP, but it only reached statistical significance for knee OA (p = 0.017; OR 0.92, CI 0.86–0.989). This is the first study attempting to explore the association of genetic variants with the OA phenotype. These data suggest the need to consider the OA phenotype in future genetic association studies of OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Foss MV, Byers PD (1972) Bone density, osteoarthrosis of the hip, and fracture of the upper end of the femur. Ann Rheum Dis 31(4):259–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Burger H, Van Daele PL, Odding E, Valkenburg HA, Hofman A, Grobbee DE et al (1996) Association of radiographically evident osteoarthritis with higher bone mineral density and increased bone loss with age. The Rotterdam Study. Arthritis Rheum 39(1):81–86

    Article  CAS  PubMed  Google Scholar 

  3. Hannan MT, Anderson JJ, Zhang Y, Levy D, Felson DT (1993) Bone mineral density and knee osteoarthritis in elderly men and women. The Framingham Study. Arthritis Rheum 36(12):1671–1680

    Article  CAS  PubMed  Google Scholar 

  4. Hart DJ, Mootoosamy I, Doyle DV, Spector TD (1994) The relationship between osteoarthritis and osteoporosis in the general population: the Chingford Study. Ann Rheum Dis 53(3):158–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lingard EA, Mitchell SY, Francis RM, Rawlings D, Peaston R, Birrell FN et al (2010) The prevalence of osteoporosis in patients with severe hip and knee osteoarthritis awaiting joint arthroplasty. Age Ageing 39(2):234–239

    Article  PubMed  Google Scholar 

  6. Akamatsu Y, Mitsugi N, Taki N, Takeuchi R, Saito T (2009) Relationship between low bone mineral density and varus deformity in postmenopausal women with knee osteoarthritis. J Rheumatol 36(3):592–597

    Article  PubMed  Google Scholar 

  7. Solomon L (1976) Patterns of osteoarthritis of the hip. J Bone Jt Surg Br 58(2):176–183

    CAS  Google Scholar 

  8. Hardcastle SA, Dieppe P, Gregson CL, Hunter D, Thomas GE, Arden NK et al (2014) Prevalence of radiographic hip osteoarthritis is increased in high bone mass. Osteoarthr Cartil 22(8):1120–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schnitzler CM, Mesquita JM, Wane L (1992) Bone histomorphometry of the iliac crest, and spinal fracture prevalence in atrophic and hypertrophic osteoarthritis of the hip. Osteoporos Int 2(4):186–194

    Article  CAS  PubMed  Google Scholar 

  10. Deng ZH, Zeng C, Li YS, Yang T, Li H, Wei J et al (2016) Relation between phalangeal bone mineral density and radiographic knee osteoarthritis: a cross-sectional study. BMC Musculoskelet Disord 17(1):71

    Article  PubMed  PubMed Central  Google Scholar 

  11. Spector TD, MacGregor AJ (2004) Risk factors for osteoarthritis: genetics. Osteoarthr Cartil 12(Suppl A):S39–S44

    Article  PubMed  Google Scholar 

  12. Yerges-Armstrong LM, Yau MS, Liu Y, Krishnan S, Renner JB, Eaton CB et al (2014) Association analysis of BMD-associated SNPs with knee osteoarthritis. J Bone Miner Res 29(6):1373–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sharma AR, Jagga S, Lee SS, Nam JS (2013) Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis. Int J Mol Sci 14(10):19805–19830

    Article  PubMed  PubMed Central  Google Scholar 

  14. Corr M (2008) Wnt-beta-catenin signaling in the pathogenesis of osteoarthritis. Nat Clin Pract Rheumatol 4(10):550–556

    Article  CAS  PubMed  Google Scholar 

  15. Krishnan V, Bryant HU, Macdougald OA (2006) Regulation of bone mass by Wnt signaling. J Clin Invest 116(5):1202–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Glass DA, Karsenty G (2006) Molecular bases of the regulation of bone remodeling by the canonical Wnt signaling pathway. Curr Top Dev Biol 73:43–84

    Article  CAS  PubMed  Google Scholar 

  17. Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44(5):491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH, Richards JB et al (2009) Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet 41(11):1199–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zheng HF, Tobias JH, Duncan E, Evans DM, Eriksson J, Paternoster L et al (2012) WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet 8(7):e1002745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koller DL, Zheng HF, Karasik D, Yerges-Armstrong L, Liu CT, McGuigan F et al (2013) Meta-analysis of genome-wide studies identifies WNT16 and ESR1 SNPs associated with bone mineral density in premenopausal women. J Bone Miner Res 28(3):547–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T et al (2009) New sequence variants associated with bone mineral density. Nat Genet 41(1):15–17

    Article  CAS  PubMed  Google Scholar 

  22. Zheng HF, Forgetta V, Hsu YH, Estrada K, Rosello-Diez A, Leo PJ et al (2015) Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526(7571):112–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garcia-Ibarbia C, Perez-Castrillon JL, Ortiz F, Velasco J, Zarrabeitia MT, Sumillera M et al (2013) Wnt-related genes and large-joint osteoarthritis: association study and replication. Rheumatol Int 33(11):2875–2880

    Article  CAS  PubMed  Google Scholar 

  24. Dell’Accio F, De Bari C, Eltawil NM, Vanhummelen P, Pitzalis C (2008) Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis. Arthritis Rheum 58(5):1410–1421

    Article  PubMed  Google Scholar 

  25. Nalesso G, Thomas BL, Sherwood JC, Yu J, Addimanda O, Eldridge SE et al (2017) WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis. Ann Rheum Dis 76(1):218–226

    Article  PubMed  Google Scholar 

  26. Altman RD, Gold GE (2007) Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthr Cartil 15(Suppl A):A1–A56

    Article  PubMed  Google Scholar 

  27. Nevitt MC, Lane NE, Scott JC, Hochberg MC, Pressman AR, Genant HK et al (1995) Radiographic osteoarthritis of the hip and bone mineral density. The Study of Osteoporotic Fractures Research Group. Arthritis Rheum 38(7):907–916

    Article  CAS  PubMed  Google Scholar 

  28. Garcia-Ibarbia C, Perez-Nunez MI, Olmos JM, Valero C, Perez-Aguilar MD, Hernandez JL et al (2013) Missense polymorphisms of the WNT16 gene are associated with bone mass, hip geometry and fractures. Osteoporos Int 24(9):2449–2454

    Article  CAS  PubMed  Google Scholar 

  29. Moverare-Skrtic S, Henning P, Liu X, Nagano K, Saito H, Borjesson AE et al (2014) Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat Med 20(11):1279–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van den Bosch MH, Blom AB, Sloetjes AW, Koenders MI, Van de Loo FA, Van den Berg WB et al (2015) Induction of canonical wnt signaling by synovial overexpression of selected Wnts leads to protease activity and early osteoarthritis-like cartilage damage. Am J Pathol 185(7):1970–1980

    Article  PubMed  Google Scholar 

  31. Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J et al (2004) The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum 50(4):1193–1206

    Article  CAS  PubMed  Google Scholar 

  32. Buckland-Wright C (2004) Subchondral bone changes in hand and knee osteoarthritis detected by radiography. Osteoarthr Cartil 12(Suppl A):S10–S19

    Article  PubMed  Google Scholar 

  33. Felson DT, Neogi T (2004) Osteoarthritis: is it a disease of cartilage or of bone? Arthritis Rheum 50(2):341–344

    Article  PubMed  Google Scholar 

  34. Bellido M, Lugo L, Roman-Blas JA, Castaneda S, Calvo E, Largo R et al (2011) Improving subchondral bone integrity reduces progression of cartilage damage in experimental osteoarthritis preceded by osteoporosis. Osteoarthr Cartil 19(10):1228–1236

    Article  CAS  PubMed  Google Scholar 

  35. Gori F, Lerner U, Ohlsson C, Baron R (2015) A new WNT on the bone: WNT16, cortical bone thickness, porosity and fractures. Bonekey Rep 4:669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Doherty M, Courtney P, Doherty S, Jenkins W, Maciewicz RA, Muir K et al (2008) Nonspherical femoral head shape (pistol grip deformity), neck shaft angle, and risk of hip osteoarthritis: a case-control study. Arthritis Rheum 58(10):3172–3182

    Article  PubMed  Google Scholar 

  37. Lynch JA, Parimi N, Chaganti RK, Nevitt MC, Lane NE (2009) The association of proximal femoral shape and incident radiographic hip OA in elderly women. Osteoarthr Cartil 17(10):1313–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu M, Tang D, Wu Q, Hao S, Chen M, Xie C et al (2009) Activation of beta-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult beta-catenin conditional activation mice. J Bone Miner Res 24(1):12–21

    Article  CAS  PubMed  Google Scholar 

  39. Lories RJ, Peeters J, Bakker A (2007) Articular cartilage and biomechanical properties of the long bones en Frzb-knockout mice. Arthritis Rheum 56:4095–4103

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is supported by the Grants from the Instituto de Salud Carlos III (PI 06/0034 and PI 09/0635), to be cofunded by FEDER Funds from the EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Riancho.

Ethics declarations

Conflict of interest

All the authors do not have any conflicts of interest relevant to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Ibarbia, C., Neila, S., Garcés, C. et al. Non-synonymous WNT16 polymorphisms alleles are associated with different osteoarthritis phenotypes. Rheumatol Int 37, 1667–1672 (2017). https://doi.org/10.1007/s00296-017-3783-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-017-3783-5

Keywords

Navigation