Skip to main content

Advertisement

Log in

The effect of cryotherapy on total antioxidative capacity in patients with active seropositive rheumatoid arthritis

  • Clinical Trials
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Patients with rheumatoid arthritis (RA) have increased oxidative stress, decreased antioxidant levels, and impaired antioxidant capacity. Cold treatments are used to relieve joint inflammation and pain. Therefore, we measured the effect of cold treatments on the antioxidative capacity of RA patients with active disease. Sixty patients were randomized to (1) whole body cryotherapy at −110 °C, (2) whole body cryotherapy at −60 °C, or (3) local cryotherapy. Each treatment was given three times daily for 7 consecutive days in addition to the conventional rehabilitation. Blinded rheumatologist evaluated disease activity before the first and after the last cryotherapy. We collected plasma samples daily immediately before the first and after the second cryotherapy and measured total peroxyl radical trapping antioxidant capacity of plasma (TRAP), which reflects global combined antioxidant capacity of all individual antioxidants in plasma. Baseline morning TRAP levels (mean, 95% CI), adjusted for age, body mass index, disease activity, and dose of prednisolone, were 1244 (1098–1391) µM/l in the local cryotherapy, 1133 (1022–1245) µM/l in the cryotherapy at −60 °C, and 989 (895–1082) µM/l in the cryotherapy at −110 °C groups (p = 0.006). After the first treatment, there was a rise in 1-h TRAP of 14.2 (−4.2 to 32.6) µM/l, 16.1 (−7.4 to 39.6) µM/l, and 23.6 (4.1–43.2) µM/l, respectively. The increase was significant in the whole-body cryotherapy −110 °C group (p < 0.001) but not significant between the groups (p = 0.78). When analyzed for the whole week, the daily morning TRAP values differed significantly between the treatment groups (p = 0.021), but there was no significant change within each treatment group. Whole-body cryotherapy at −110 °C induced a short-term increase in TRAP during the first treatment session with but not during other treatment modalities. The effect was short and the cold treatments did not cause a significant oxidative stress or adaptation during 1 week.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Greenwald RA (1991) Oxygen radicals, inflammation, and arthritis: pathophysiological considerations and implications for treatment. Semin Arthritis Rheum 20:219–240

    Article  CAS  PubMed  Google Scholar 

  2. Hitchon CA, El-Gabalawy HS (2004) Oxidation in rheumatoid arthritis. Arthritis Res Ther 6:265–278

    Article  PubMed  PubMed Central  Google Scholar 

  3. Afonso V, Champy R, Mitrovic D, Collin P, Lomri A (2007) Reactive oxygen species and superoxide dismutases: role in joint diseases. Jt Bone Spine 74:324–329

    Article  CAS  Google Scholar 

  4. Schenck P, Schneider S, Miehlke R, Prehm P (1995) Synthesis and degradation of hyaluronate by synovia from patients with rheumatoid arthritis. J Rheumatol 22:400–405

    CAS  PubMed  Google Scholar 

  5. Baker M, Feigan J, Lowther A (1989) The mechanism of chondrocyte hydrogen peroxide damage. Depletion of intracellular ATP due to suppression of glycolysis caused by oxidation of glyceraldehyde-3-phosphate dehydrogenase. J Rheumatol 16:7–14

    CAS  PubMed  Google Scholar 

  6. Vincent F, Brun H, Clain E, Ronot X, Adolphe M (1989) Effects of oxygen-free radicals on proliferation kinetics of cultured rabbit articular chondrocytes. J Cell Physiol 141:262–266

    Article  CAS  PubMed  Google Scholar 

  7. Schalkwijk J, van den Berg W, van de Putte L, Joosten L (1985) Hydrogen peroxide suppresses the proteoglycan synthesis of intact articular cartilage. J Rheumatol 12:205–210

    CAS  PubMed  Google Scholar 

  8. Bates E, Lowther D, Handley C (1984) Oxygen free-radicals mediate an inhibition of proteoglycan synthesis in cultured articular cartilage. Ann Rheum Dis 43:462–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Greenwald R, Moy W (1980) Effect of oxygen-derived free radicals on hyaluronic acid. Arthritis Rheum 23:455–463

    Article  CAS  PubMed  Google Scholar 

  10. Panasyuk A, Frati E, Ribault D, Mitrovic D (1994) Effect of reactive oxygen species on the biosynthesis and structure of newly synthesized proteoglycans. Free Radic Biol Med 16:157–167

    Article  CAS  PubMed  Google Scholar 

  11. Bashir S, Harris G, Denman M, Blake D, Winyard P (1993) Oxidative DNA damage and cellular sensitivity to oxidative stress in human autoimmune diseases. Ann Rheum Dis 52:659–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Öztürk HS, Çimen MYB, Kaçmaz M, Durak Î (1999) Oxidant/antioxidant status of plasma samples from patients with rheumatoid arthritis. Rheumatol Int 19:35–37

    Article  PubMed  Google Scholar 

  13. Schett G, Tohidast-Akrad M, Steiner G, Smolen J (2001) The stressed synovium. Arthritis Res 3:80–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hassan SZ, Gheita TA, Kenawy SA, Fahim AT, El-Sorougy IM, Abdou MS (2011) Oxidative stress in systemic lupus erythematosus and rheumatoid arthritis patients: relationship to disease manifestations and activity. In J Rheum Dis 14:325–331

    Article  Google Scholar 

  15. Sarban S, Kocyigit A, Yazar M, Isikan UE (2005) Plasma total antioxidant capacity, lipid peroxidation, and erythrocyte antioxidant enzyme activities in patients with rheumatoid arthritis and osteoarthritis. Clin Biochem 38:981–986

    Article  CAS  PubMed  Google Scholar 

  16. Hayward JS, Eckerson JD, Collis ML (1977) Thermoregulatory heat production in man: prediction equation based on skin and core temperatures. J Appl Physiol Respir Environ Exerc Physiol 42:377–384

    CAS  PubMed  Google Scholar 

  17. Siems WG, Brenke R, Sommerburg O, Grune T (1999) Improved antioxidative protection in winter swimmers. Q J Med 92:193–198

    Article  CAS  Google Scholar 

  18. Yamauchi T, Kim S, Nogami S, Abe D, Kawano Y (1981) Extreme cold treatment (−150 °C) on the whole body in rheumatoid arthritis. In: ILAR XVth international congress of rheumatology, Paris, 21–27 June 1981 (abstract Rev Rhum 48(suppl):P1054)

  19. Fricke R (1989) Ganzkörperkältetherapie in einer Kältekammer mit Temperaturen um −110 °C. Z Phys Baln Med Klim 18:1–10

    Google Scholar 

  20. Metzger D, Zwingmann C, Protz W, Jäckel WH (2000) Whole-body cryotherapy in rehabilitation of patients with rheumatoid arthritis. Rehabilitation (Stuttg) 39:93–100

    Article  CAS  Google Scholar 

  21. Hirvonen HE, Mikkelsson MK, Kautiainen H, Pohjolainen TH, Leirisalo-Repo M (2006) Effectiveness of different cryotherapies on pain and disease activity in active rheumatoid arthritis. A randomised single blinded controlled trial. Clin Exp Rheumatol 24:295–301

    CAS  PubMed  Google Scholar 

  22. Aejmelaeus R, Metsä-Ketelä T, Pirttilä T, Hervonen A, Alho H (1997) Unidentified antioxidant defences of human plasma in immobilized patients: a possible relation to basic metabolic rate. Free Radic Res 26:335–341

    Article  CAS  PubMed  Google Scholar 

  23. Pinho RA, Chiesa D, Mezzomo KM, Andrades ME, Bonatto F, Gelain D, Dal Pizzol F, Knorst MM, Moreira JC (2007) Oxidative stress in chronic obstructive pulmonary disease patients submitted to a rehabilitation program. Respir Med 101:1830–1835

    Article  CAS  PubMed  Google Scholar 

  24. Dugué B, Smolander J, Westerlund T, Oksa J, Nieminen R, Moilanen E, Mikkelsson M (2005) Acute and long-term effects of winter swimming and whole-body cryotherapy on plasma antioxidative capacity in healthy women. Scand J Clin Lab Invest 65:395–402

    Article  PubMed  Google Scholar 

  25. van der Heijde DM, van ‘t Hof M, van Riel PL, van de Putte LB (1993) Development of a disease activity score based on judgment in clinical practice by rheumatologists. J Rheumatol 20:579–581

    PubMed  Google Scholar 

  26. Metsä-Ketelä T (1991) Luminescent assay for total peroxyl radical-trapping capability of plasma. In: Stanley P, Kricka L (eds) Bioluminescence and chemiluminescence. Current status. Wiley, Chichester, pp 389–392

    Google Scholar 

  27. Aejmelaeus TR, Holm P, Kaukinen U, Metsä-Ketelä TJA, Laippala P, Hervonen ALJ, Alho HER (1997) Age-related changes in the peroxyl radical scavenging capacity of human plasma. Free Radic Biol Med 23:69–75

    Article  CAS  PubMed  Google Scholar 

  28. Braun KP, Brookman-Amissah S, Geissler K, Ast D, May M, Ernst H (2009) Ganzkörperkryotherapie be Patienten mit entzündlich-rheumatischen Erkrankungen. Med Klin (Munich) 104:192–196

    Article  Google Scholar 

  29. Guillot X, Tordi N, Mourot L, Demougeot C, Dugué B, Prati C, Wendling D (2014) Cryotherapy in inflammatory rheumatic diseases: a systematic review. Expert Rev Clin Immunol 10:281–294

    Article  CAS  PubMed  Google Scholar 

  30. Księżopolska-Orłowska K, Pacholec A, Jędryka-Góral A, Bugajska J, Sadura-Sieklucka T, Kowalik K, Pawłowska-Cyprysiak K, Łastowiecka-Moras E (2016) Complex rehabilitation and the clinical condition of working rheumatoid arthritis patients: does cryotherapy always overtop traditional rehabilitation? Disabil Rehabil 38:1034–1040

    Article  PubMed  Google Scholar 

  31. Leppäluoto J, Westerlund T, Huttunen P, Oksa J, Smolander J, Dugué B, Mikkelsson M (2008) Effects of long-term whole-body cold exposures on plasma concentrations of ACTH, beta-endorphin, cortisol, catecholamines and cytokines in healthy females. Scand J Clin Lab Invest 68:145–153

    Article  PubMed  Google Scholar 

  32. Aejmelaeus R (1997) The total radical scavenging capacity of human plasma and LDL: effect of age and disease. Dissertation. University of Tampere, National Public Health Institute Helsinki

  33. Aejmelaeus R, Metsä-Ketelä T, Laippala P, Alho H (1996) Is there an unidentified defence mechanism against infection in human plasma? FEBS Lett 384:120–130

    Article  Google Scholar 

  34. Joshi R, Kumar S, Unnikrishnan M, Mukherjee T (2005) Free radical scavenging reactions of sulfasalazine, 5-aminosalicylic acid and sulfapyridine: mechanistic aspects and antioxidant activity. Free Radic Res 39:1163–1172

    Article  CAS  PubMed  Google Scholar 

  35. Grootveld M, Blake DR, Sahinoglu T, Claxson AW, Mapp P, Stevens C, Allen RE, Furst A (1990) Control of oxidative damage in rheumatoid arthritis by gold(I)-thiolate drugs. Free Radic Res Commun 10:199–220

    Article  CAS  PubMed  Google Scholar 

  36. Vuolteenaho K, Kujala P, Moilanen T, Moilanen E (2005) Aurothiomalate and hydroxychloroquine inhibit nitric oxide production in chondrocytes and in human osteoarthritic cartilage. Scand J Rheumatol 34:475–479

    Article  CAS  PubMed  Google Scholar 

  37. Túnez I, Feijóo M, Huerta G, Montilla P, Muñoz E, Ruíz A, Collantes E (2007) The effect of infliximab on oxidative stress in chronic inflammatory joint disease. Curr Med Res Opin 23:1259–1267

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Leirisalo-Repo.

Ethics declarations

Disclosures

The authors declare that they have no conflict of interest relevant to the content of this work.

Funding

The study was funded by the Finnish Social Insurance Institution.

Conflict of interest

Marjatta Leirisalo-Repo, Hanna Hirvonen, Hannu Kautiainen, Eeva Moilanen, and Marja Mikkelsson declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirvonen, H., Kautiainen, H., Moilanen, E. et al. The effect of cryotherapy on total antioxidative capacity in patients with active seropositive rheumatoid arthritis. Rheumatol Int 37, 1481–1487 (2017). https://doi.org/10.1007/s00296-017-3771-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-017-3771-9

Keywords

Navigation