Skip to main content

Advertisement

Log in

Foot pain severity is associated with the ratio of visceral to subcutaneous fat mass, fat-mass index and depression in women

  • Observational research
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Body composition and poor mental health are risk factors for developing foot pain, but the role of different fat deposits and psychological features related to chronic pain are not well understood. The aim of this study was to investigate the association between body composition, psychological health and foot pain. Eighty-eight women participated in this study: 44 with chronic, disabling foot pain (mean age 55.3 SD 7.0 years, BMI 29.5 SD 6.7 kg/m2), and 44 age and BMI matched controls. Disabling foot pain was determined from the functional limitation domain of the Manchester Foot Pain and Disability Index. Body composition was measured using dual X-ray absorptiometry and psychological health (catastrophisation, central sensitisation and depression) was measured using three validated questionnaires. Between-group analyses found that foot pain was not significantly associated with body composition variables, but was significantly associated with all psychological health measures (P < 0.001–0.047). Within-group analyses found that the severity of foot pain was significantly correlated with body composition measures: fat mass (total, android, gynoid, and visceral), fat-mass ratios [visceral/subcutaneous (VAT/SAT), visceral/android], fat-mass index (FMI), and depression. In multivariable analysis, VAT/SAT (β 1.27, 95% CI 0.28–2.27), FMI (β 0.14, 95% CI 0.02–0.25) and depression (β 0.06, 95% CI 0.00–0.12) were independently associated with foot pain severity. Psychological health, not body composition, was associated with prevalent foot pain. For women with foot pain, VAT/SAT, FMI and depression were associated with severity. Further work is needed to determine if a reduction in fat mass reduces the severity of foot pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomas MJ, Roddy E, Zhang W, Menz HB, Hannan MT, Peat GM (2011) The population prevalence of foot and ankle pain in middle and old age: a systematic review. Pain 152:2870–2880

    Article  PubMed  Google Scholar 

  2. Gorter KJ, Kuyvenhoven MM, de Melker RA (2000) Nontraumatic foot complaints in older people. A population-based survey of risk factors, mobility, and well-being. J Am Podiatr Med Assoc 90:397–402

    Article  CAS  PubMed  Google Scholar 

  3. Menz HB, Tiedemann A, Kwan MMS, Plumb K, Lord SR (2006) Foot pain in community-dwelling older people: an evaluation of the Manchester Foot Pain and Disability Index. Rheumatology 45:863–867

    Article  CAS  PubMed  Google Scholar 

  4. Roddy E, Muller S, Thomas E (2011) Onset and persistence of disabling foot pain in community-dwelling older adults over a 3-year period: a prospective cohort study. J Gerontol A Biol Sci Med Sci 66:474–480

    Article  PubMed  Google Scholar 

  5. Butterworth PA, Landorf KB, Smith SE, Menz HB (2012) The association between body mass index and musculoskeletal foot disorders: a systematic review. Obes Rev 13:630–642

    Article  CAS  PubMed  Google Scholar 

  6. Gay A, Culliford D, Leyland K, Arden NK, Bowen CJ (2014) Associations between body mass index and foot joint pain in middle-aged and older women: a longitudinal population-based cohort study. Arthritis Care Res 66:1873–1879

    Article  Google Scholar 

  7. Wearing SC, Hennig EM, Byrne NM, Steele JR, Hills AP (2006) Musculoskeletal disorders associated with obesity: a biomechanical perspective. Obes Rev 7:239–250

    Article  CAS  PubMed  Google Scholar 

  8. Tanamas SK, Wluka AE, Berry P et al (2012) Relationship between obesity and foot pain and its association with fat mass, fat distribution, and muscle mass. Arthritis Care Res 64:262–268

    Article  Google Scholar 

  9. Butterworth PA, Urquhart DM, Cicuttini FM et al (2013) Fat mass is a predictor of incident foot pain. Obesity 21:E495–E499

    CAS  PubMed  Google Scholar 

  10. Walsh TP, Gill TK, Evans AM et al (2016) Association of fat mass and adipokines with foot pain in a community cohort. Arthritis Care Res 68:526–533

    Article  CAS  Google Scholar 

  11. Cotchett M, Munteanu SE, Landorf KB (2016) Depression, anxiety, and stress in people with and without plantar heel pain. Foot Ankle Int 37:816–821

    Article  PubMed  Google Scholar 

  12. Awale A, Dufour AB, Katz P, Menz HB, Hannan MT (2016) Link between foot pain severity and prevalence of depressive symptoms. Arthritis Care Res 68:871–876

    Article  Google Scholar 

  13. Butterworth PA, Urquhart DM, Cicuttini FM et al (2014) Relationship between mental health and foot pain. Arthritis Care Res 66:1241–1245

    Article  Google Scholar 

  14. Cotchett MP, Whittaker G, Erbas B (2015) Psychological variables associated with foot function and foot pain in patients with plantar heel pain. Clin Rheumatol 34:957–964

    Article  PubMed  Google Scholar 

  15. Somers TJ, Keefe FJ, Carson JW, Pells JJ, Lacaille L (2008) Pain catastrophizing in borderline morbidly obese and morbidly obese individuals with osteoarthritic knee pain. Pain Res Manag 13:401–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Imamura M, Imamura ST, Kaziyama HHS et al (2008) Impact of nervous system hyperalgesia on pain, disability, and quality of life in patients with knee osteoarthritis: a controlled analysis. Arthritis Rheum 59:1424–1431

    Article  PubMed  Google Scholar 

  17. Schutz Y, Kyle UUG, Pichard C (2002) Fat-free mass index and fat mass index percentiles in Caucasians aged 18–98 y. Int J Obes Relat Metab Disord 26:953–960

    Article  CAS  PubMed  Google Scholar 

  18. Blaak E (2001) Gender differences in fat metabolism. Curr Opin Clin Nutr Metab Care 4:499

    Article  CAS  PubMed  Google Scholar 

  19. Lemieux S, Prud’homme D, Bouchard C, Tremblay A, Després J-P (1993) Sex differences in the relation of visceral adipose tissue accumulation to total body fatness. Am J Clin Nutr 58:463–467

    CAS  PubMed  Google Scholar 

  20. Murabito JM, Massaro JM, Clifford B, Hoffmann U, Fox CS (2013) Depressive symptoms are associated with visceral adiposity in a community-based sample of middle-aged women and men. Obesity 21:1713–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee ES, Kim YH, Beck S-H, Lee S, Oh SW (2005) Depressive mood and abdominal fat distribution in overweight premenopausal women. Obes Res 13:320–325

    Article  PubMed  Google Scholar 

  22. Dantzer R (2012) Depression and inflammation: an intricate relationship. Biol Psychiatry 71:4–5

    Article  PubMed  Google Scholar 

  23. Wellen KE, Hotamisligil GS (2003) Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 112:1785–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Capuron L, Lasselin J, Castanon N (2017) Role of adiposity-driven inflammation in depressive morbidity. Neuropsychopharmacology 42:115–128

    Article  CAS  PubMed  Google Scholar 

  25. Garrow AP, Papageorgiou AC, Silman AJ et al (2000) Development and validation of a questionnaire to assess disabling foot pain. Pain 85:107–113

    Article  CAS  PubMed  Google Scholar 

  26. Kaul S, Rothney MP, Peters DM, Wacker WK (2012) Dual-energy X-ray absorptiometry for quantification of visceral fat. Obesity 20:1313–1318

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rothney MP, Martin F-P, Xia Y et al (2012) Precision of GE Lunar iDXA for the measurement of total and regional body composition in nonobese adults. J Clin Densitom 15:399–404

    Article  PubMed  Google Scholar 

  28. Radloff LS (1977) The CES-D scale: a self-report depression scale for research in the general population. Appl Psychol Meas 1:385–401

    Article  Google Scholar 

  29. Weissman MM, Sholomskas D (1977) Assessing depressive symptoms in five psychiatric populations: a validation study. Am J Epidemiol 106:203–214

    Article  CAS  PubMed  Google Scholar 

  30. Mayer TG, Neblett R, Cohen H et al (2012) The development and psychometric validation of the central sensitization inventory. Pain Pract 12:276–285

    Article  PubMed  Google Scholar 

  31. Neblett R, Cohen H, Choi Y et al (2013) The central sensitization inventory (CSI): establishing Clinically significant values for identifying central sensitivity syndromes in an outpatient chronic pain sample. J Pain 14:438–445

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sullivan MJL, Bishop SR, Pivik J (1995) The pain catastrophizing scale: development and validation. Psychol Assess 7:524–532

    Article  Google Scholar 

  33. Walton DM, Wideman TH, Sullivan MJL (2013) A Rasch analysis of the pain catastrophizing scale supports its use as an interval-level measure. The Clin J Pain 29:499–506

    Article  PubMed  Google Scholar 

  34. Roddy E, Muller S, Thomas E (2009) Defining disabling foot pain in older adults: further examination of the Manchester Foot Pain and Disability Index. Rheumatology 48:992–996

    Article  PubMed  Google Scholar 

  35. Gijon-Nogueron G, Ndosi M, Luque-Suarez A et al (2014) Cross-cultural adaptation and validation of the Manchester Foot Pain and Disability Index into Spanish. Qual Life Res 23:571–579

    Article  PubMed  Google Scholar 

  36. Freynhagen R, Tölle TR, Gockel U, Baron R (2016) The painDETECT project—far more than a screening tool on neuropathic pain. Curr Med Res Opin 32:1033–1057

    Article  PubMed  Google Scholar 

  37. Freynhagen R, Baron R, Gockel U, Tölle TR (2006) painDETECT: a new screening questionnaire to identify neuropathic components in patients with back pain. Curr Med Res Opin 22:1911–1920

    Article  PubMed  Google Scholar 

  38. Kaess BM, Pedley A, Massaro JM et al (2012) The ratio of visceral to subcutaneous fat, a metric of body fat distribution, is a unique correlate of cardiometabolic risk. Diabetologia 55:2622–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bair MJ, Robinson RL, Katon W, Kroenke K (2003) Depression and pain comorbidity: a literature review. Arch Intern Med 163:2433–2445

    Article  PubMed  Google Scholar 

  40. Capuron L, Poitou C, Machaux-Tholliez D, Frochot V, Bouillot JL, Basdevant A et al (2011) Relationship between adiposity, emotional status and eating behaviour in obese women: role of inflammation. Psychol Med 41:1517–1528

    Article  CAS  PubMed  Google Scholar 

  41. Lasselin J, Kemani MK, Kanstrup M et al (2016) Low-grade inflammation may moderate the effect of behavioral treatment for chronic pain in adults. J Behav Med 39:916–924

    Article  PubMed  PubMed Central  Google Scholar 

  42. Guneli E, Gumustekin M, Ates M (2010) Possible involvement of ghrelin on pain threshold in obesity. Med Hypotheses 74:452–454

    Article  CAS  PubMed  Google Scholar 

  43. Younger J, Kapphahn K, Brennan K, Sullivan SD, Stefanick ML (2016) Association of leptin with body pain in women. J Womens Health (Larchmt) 25:752–760

    Article  Google Scholar 

  44. Rechardt M, Shiri R, Lindholm H, Karppinen J, Viikari-Juntura E (2013) Associations of metabolic factors and adipokines with pain in incipient upper extremity soft tissue disorders: a cross-sectional study. BMJ Open 3:e003036

    Article  PubMed  PubMed Central  Google Scholar 

  45. Després J-P, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444:881–887

    Article  PubMed  Google Scholar 

  46. Dugan SA, Powell LH, Kravitz HM et al (2006) Musculoskeletal pain and menopausal status. Clin J Pain 22:325–331

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the study participants who made this study possible.

Funding

TPW is funded by a Nursing and Allied Health Scholarship and Support Scheme funded by the Commonwealth Department of Health and administered by Services for Australian Rural and Remote Allied Health. This study was funded by the Australian Podiatry Education and Research Foundation (APERF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom P. Walsh.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walsh, T.P., Arnold, J.B., Gill, T.K. et al. Foot pain severity is associated with the ratio of visceral to subcutaneous fat mass, fat-mass index and depression in women. Rheumatol Int 37, 1175–1182 (2017). https://doi.org/10.1007/s00296-017-3743-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-017-3743-0

Keywords

Navigation