Skip to main content

The function of myeloid dendritic cells in rheumatoid arthritis

Abstract

Rheumatoid arthritis (RA) is a systemic autoimmune disease that causes joint pain, inflammation, and loss of function. Disease pathogenesis involves activation and proliferation of autoreactive pro-inflammatory effector T cells. While the details of RA onset and progression remain controversial, dendritic cell (DC) numbers dramatically increase in the synovial joint tissues of RA patients. Based on their key functions as antigen-presenting cells and inducers of T cell differentiation, DCs may play an important role in the initiation of joint inflammation. Myeloid DC contributions are likely central to the development of RA, as they are more efficient at antigen presentation in comparison with their closely related cousins, plasmacytoid DCs. Synovial fluid in the joints of RA patients is enriched with pro-inflammatory cytokines and chemokines, which may stimulate or result from DC activation. Epidemiological evidence indicates that smoking and periodontal infection are major environmental risk factors for RA development. In this review, factors in the synovial environment that contribute to altered myeloid DC functions in RA and the effects of environmental risk factors on myeloid DCs are described.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Gibofsky A (2012) Overview of epidemiology, pathophysiology, and diagnosis of rheumatoid arthritis. Am J Manag Care 18(13 Suppl):S295–S302

    PubMed  Google Scholar 

  2. McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365(23):2205–2219. doi:10.1056/NEJMra1004965

    CAS  PubMed  Article  Google Scholar 

  3. Entezami P, Fox DA, Clapham PJ, Chung KC (2011) Historical perspective on the etiology of rheumatoid arthritis. Hand Clin 27(1):1–10. doi:10.1016/j.hcl.2010.09.006

    PubMed  PubMed Central  Article  Google Scholar 

  4. Boissier MC, Semerano L, Challal S, Saidenberg-Kermanac’h N, Falgarone G (2012) Rheumatoid arthritis: from autoimmunity to synovitis and joint destruction. J Autoimmun 39(3):222–228. doi:10.1016/j.jaut.2012.05.021

    CAS  PubMed  Article  Google Scholar 

  5. Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106(3):255–258

    CAS  PubMed  Article  Google Scholar 

  6. Jia XY, Chang Y, Sun XJ, Dai X, Wei W (2014) The role of prostaglandin E2 receptor signaling of dendritic cells in rheumatoid arthritis. Int Immunopharmacol 23(1):163–169. doi:10.1016/j.intimp.2014.08.024

    CAS  PubMed  Article  Google Scholar 

  7. Schmidt SV, Nino-Castro AC, Schultze JL (2012) Regulatory dendritic cells: there is more than just immune activation. Front Immunol 3:274. doi:10.3389/fimmu.2012.00274

    PubMed  PubMed Central  Google Scholar 

  8. Cosway E, Anderson G, Garside P, Prendergast C (2016) The thymus and rheumatology: should we care? Curr Opin Rheumatol 28(2):189–195. doi:10.1097/bor.0000000000000251

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Zvaifler NJ, Steinman RM, Kaplan G, Lau LL, Rivelis M (1985) Identification of immunostimulatory dendritic cells in the synovial effusions of patients with rheumatoid arthritis. J Clin Invest 76(2):789–800. doi:10.1172/jci112036

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Harding B, Knight SC (1986) The distribution of dendritic cells in the synovial fluids of patients with arthritis. Clin Exp Immunol 63(3):594–600

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Miossec P (2008) Dynamic interactions between T cells and dendritic cells and their derived cytokines/chemokines in the rheumatoid synovium. Arthritis research therapy 10(Suppl 1):S2. doi:10.1186/ar2413

    PubMed  PubMed Central  Article  Google Scholar 

  12. Leung BP, Conacher M, Hunter D, McInnes IB, Liew FY, Brewer JM (2002) A novel dendritic cell-induced model of erosive inflammatory arthritis: distinct roles for dendritic cells in T cell activation and induction of local inflammation. J Immunol (Baltimore, Md: 1950) 169 (12):7071–7077

    CAS  Article  Google Scholar 

  13. Satpathy AT, Wu X, Albring JC, Murphy KM (2012) Re(de)fining the dendritic cell lineage. Nat Immunol 13(12):1145–1154. doi:10.1038/ni.2467

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Collin M, McGovern N, Haniffa M (2013) Human dendritic cell subsets. Immunology 140(1):22–30. doi:10.1111/imm.12117

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Merad M, Sathe P, Helft J, Miller J, Mortha A (2013) The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31:563–604. doi:10.1146/annurev-immunol-020711-074950

    CAS  PubMed  Article  Google Scholar 

  16. Lebre MC, Jongbloed SL, Tas SW, Smeets TJ, McInnes IB, Tak PP (2008) Rheumatoid arthritis synovium contains two subsets of CD83-DC-LAMP- dendritic cells with distinct cytokine profiles. Am J Pathol 172(4):940–950. doi:10.2353/ajpath.2008.070703

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Benson RA, Patakas A, Conigliaro P, Rush CM, Garside P, McInnes IB, Brewer JM (2010) Identifying the cells breaching self-tolerance in autoimmunity. J Immunol (Baltimore, Md: 1950) 184(11):6378–6385. doi:10.4049/jimmunol.0903951

    CAS  Article  Google Scholar 

  18. Jongbloed SL, Benson RA, Nickdel MB, Garside P, McInnes IB, Brewer JM (2009) Plasmacytoid dendritic cells regulate breach of self-tolerance in autoimmune arthritis. J Immunol (Baltimore, Md: 1950) 182(2):963–968

    CAS  Article  Google Scholar 

  19. Corsiero E, Bombardieri M, Manzo A, Bugatti S, Uguccioni M, Pitzalis C (2012) Role of lymphoid chemokines in the development of functional ectopic lymphoid structures in rheumatic autoimmune diseases. Immunol Lett 145(1–2):62–67. doi:10.1016/j.imlet.2012.04.013

    CAS  PubMed  Article  Google Scholar 

  20. Rovati B, Mariucci S, Manzoni M, Bencardino K, Danova M (2008) Flow cytometric detection of circulating dendritic cells in healthy subjects. EJH 52(1):45–52

    PubMed  Google Scholar 

  21. Moret FM, Hack CE, van der Wurff-Jacobs KM, de Jager W, Radstake TR, Lafeber FP, van Roon JA (2013) Intra-articular CD1c-expressing myeloid dendritic cells from rheumatoid arthritis patients express a unique set of T cell-attracting chemokines and spontaneously induce Th1, Th17 and Th2 cell activity. Arthritis Res Ther 15(5):R155. doi:10.1186/ar4338

    PubMed  PubMed Central  Article  Google Scholar 

  22. Moret FM, Hack CE, van der Wurff-Jacobs KM, Radstake TR, Lafeber FP, van Roon JA (2014) Thymic stromal lymphopoietin, a novel proinflammatory mediator in rheumatoid arthritis that potently activates CD1c + myeloid dendritic cells to attract and stimulate T cells. Arthritis Rheumatol (Hoboken, NJ) 66(5):1176–1184. doi:10.1002/art.38338

    CAS  Article  Google Scholar 

  23. Santiago B, Izquierdo E, Rueda P, Del Rey MJ, Criado G, Usategui A, Arenzana-Seisdedos F, Pablos JL (2012) CXCL12gamma isoform is expressed on endothelial and dendritic cells in rheumatoid arthritis synovium and regulates T cell activation. Arthritis Rheum 64(2):409–417. doi:10.1002/art.33345

    CAS  PubMed  Article  Google Scholar 

  24. Segura E, Touzot M, Bohineust A, Cappuccio A, Chiocchia G, Hosmalin A, Dalod M, Soumelis V, Amigorena S (2013) Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity 38(2):336–348. doi:10.1016/j.immuni.2012.10.018

    CAS  PubMed  Article  Google Scholar 

  25. Robbins SH, Walzer T, Dembele D, Thibault C, Defays A, Bessou G, Xu H, Vivier E, Sellars M, Pierre P, Sharp FR, Chan S, Kastner P, Dalod M (2008) Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol 9(1):R17. doi:10.1186/gb-2008-9-1-r17

    PubMed  PubMed Central  Article  Google Scholar 

  26. Richez C, Schaeverbeke T, Dumoulin C, Dehais J, Moreau JF, Blanco P (2009) Myeloid dendritic cells correlate with clinical response whereas plasmacytoid dendritic cells impact autoantibody development in rheumatoid arthritis patients treated with infliximab. Arthritis Res Ther 11(3):R100. doi:10.1186/ar2746

    PubMed  PubMed Central  Article  Google Scholar 

  27. Jongbloed SL, Lebre MC, Fraser AR, Gracie JA, Sturrock RD, Tak PP, McInnes IB (2006) Enumeration and phenotypical analysis of distinct dendritic cell subsets in psoriatic arthritis and rheumatoid arthritis. Arthritis Res Ther 8(1):R15. doi:10.1186/ar1864

    PubMed  Article  Google Scholar 

  28. Richez C, Barnetche T, Khoryati L, Duffau P, Kostine M, Contin-Bordes C, Blanco P, Schaeverbeke T (2012) Tocilizumab treatment decreases circulating myeloid dendritic cells and monocytes, 2 components of the myeloid lineage. J Rheumatol 39(6):1192–1197. doi:10.3899/jrheum.111439

    CAS  PubMed  Article  Google Scholar 

  29. Estrada-Capetillo L, Hernandez-Castro B, Monsivais-Urenda A, Alvarez-Quiroga C, Layseca-Espinosa E, Abud-Mendoza C, Baranda L, Urzainqui A, Sanchez-Madrid F, Gonzalez-Amaro R (2013) Induction of Th17 lymphocytes and Treg cells by monocyte-derived dendritic cells in patients with rheumatoid arthritis and systemic lupus erythematosus. Clin Dev Immunol 2013:584303. doi:10.1155/2013/584303

  30. Prevosto C, Goodall JC, Gaston JSH (2012) Cytokine secretion by pathogen recognition receptor-stimulated dendritic cells in rheumatoid arthritis and ankylosing spondylitis. J Rheumatol 39(10):1918–1928. doi:10.3899/jrheum.120208

    CAS  PubMed  Article  Google Scholar 

  31. Robert C, Fuhlbrigge RC, Kieffer JD, Ayehunie S, Hynes RO, Cheng G, Grabbe S, von Andrian UH, Kupper TS (1999) Interaction of dendritic cells with skin endothelium: a new perspective on immunosurveillance. J Exp Med 189(4):627–636

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Urzainqui A, Martinez del Hoyo G, Lamana A, de la Fuente H, Barreiro O, Olazabal IM, Martin P, Wild MK, Vestweber D, Gonzalez-Amaro R, Sanchez-Madrid F (2007) Functional role of P-selectin glycoprotein ligand 1/P-selectin interaction in the generation of tolerogenic dendritic cells. J Immunol (Baltimore, Md: 1950) 179 (11):7457–7465

  33. Kuipers H, Muskens F, Willart M, Hijdra D, van Assema FB, Coyle AJ, Hoogsteden HC, Lambrecht BN (2006) Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4 + T cell activation. Eur J Immunol 36(9):2472–2482. doi:10.1002/eji.200635978

    CAS  PubMed  Article  Google Scholar 

  34. Moret FM, van der Wurff-Jacobs KM, Bijlsma JW, Lafeber FP, van Roon JA (2014) Synovial T cell hyporesponsiveness to myeloid dendritic cells is reversed by preventing PD-1/PD-L1 interactions. Arthritis Res Ther 16(6):497. doi:10.1186/s13075-014-0497-x

    PubMed  PubMed Central  Article  Google Scholar 

  35. Feldmann M, Brennan FM, Maini RN (1996) Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 14:397–440. doi:10.1146/annurev.immunol.14.1.397

    CAS  PubMed  Article  Google Scholar 

  36. Mertens M, Singh JA (2009) Anakinra for rheumatoid arthritis. Cochrane Database Syst Rev 1:Cd005121. doi:10.1002/14651858.CD005121.pub3

    Google Scholar 

  37. Mima T, Nishimoto N (2009) Clinical value of blocking IL-6 receptor. Curr Opin Rheumatol 21(3):224–230. doi:10.1097/BOR.0b013e3283295fec

    CAS  PubMed  Article  Google Scholar 

  38. Lutzky V, Hannawi S, Thomas R (2007) Cells of the synovium in rheumatoid arthritis. Dendritic cells. Arthritis Res Ther 9(4):219. doi:10.1186/ar2200

    PubMed  PubMed Central  Article  Google Scholar 

  39. Zhan Y, Xu Y, Lew AM (2012) The regulation of the development and function of dendritic cell subsets by GM-CSF: more than a hematopoietic growth factor. Mol Immunol 52(1):30–37. doi:10.1016/j.molimm.2012.04.009

    CAS  PubMed  Article  Google Scholar 

  40. Bhattacharya P, Budnick I, Singh M, Thiruppathi M, Alharshawi K, Elshabrawy H, Holterman MJ, Prabhakar BS (2015) Dual role of GM-CSF as a pro-inflammatory and a regulatory cytokine: implications for immune therapy. J Interfer Cytokine Res 35(8):585–599. doi:10.1089/jir.2014.0149

    CAS  Article  Google Scholar 

  41. Reynolds G, Gibbon JR, Pratt AG, Wood MJ, Coady D, Raftery G, Lorenzi AR, Gray A, Filer A, Buckley CD, Haniffa MA, Isaacs JD, Hilkens CM (2016) Synovial CD4 + T-cell-derived GM-CSF supports the differentiation of an inflammatory dendritic cell population in rheumatoid arthritis. Ann Rheum Dis 75(5):899–907. doi:10.1136/annrheumdis-2014-206578

    CAS  PubMed  Article  Google Scholar 

  42. van Roon JA, Verweij MC, Wijk MW, Jacobs KM, Bijlsma JW, Lafeber FP (2005) Increased intraarticular interleukin-7 in rheumatoid arthritis patients stimulates cell contact-dependent activation of CD4(+) T cells and macrophages. Arthritis Rheum 52(6):1700–1710. doi:10.1002/art.21045

    PubMed  Article  Google Scholar 

  43. Dodge GR, Poole AR (1989) Immunohistochemical detection and immunochemical analysis of type II collagen degradation in human normal, rheumatoid, and osteoarthritic articular cartilages and in explants of bovine articular cartilage cultured with interleukin 1. J Clin Invest 83(2):647–661. doi:10.1172/jci113929

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Martin CA, Carsons SE, Kowalewski R, Bernstein D, Valentino M, Santiago-Schwarz F 2003 Aberrant extracellular and dendritic cell (DC) surface expression of heat shock protein (hsp)70 in the rheumatoid joint: possible mechanisms of hsp/DC-mediated cross-priming. J Immunol (Baltimore, Md: 1950) 171(11):5736–5742

    CAS  Article  Google Scholar 

  45. Spierings J, van Eden W (2016) Heat shock proteins and their immunomodulatory role in inflammatory arthritis. Rheumatology (Oxford, England). doi:10.1093/rheumatology/kew266

    Google Scholar 

  46. Egelston C, Kurko J, Besenyei T, Tryniszewska B, Rauch TA, Glant TT, Mikecz K (2012) Suppression of dendritic cell maturation and T cell proliferation by synovial fluid myeloid cells from mice with autoimmune arthritis. Arthritis Rheum 64(10):3179–3188. doi:10.1002/art.34494

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Nanki T, Hayashida K, El-Gabalawy HS, Suson S, Shi K, Girschick HJ, Yavuz S, Lipsky PE (2000) Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4 + T cell accumulation in rheumatoid arthritis synovium. J Immunol (Baltimore, Md: 1950) 165(11):6590–6598

    CAS  Article  Google Scholar 

  48. Barrow AD, Raynal N, Andersen TL, Slatter DA, Bihan D, Pugh N, Cella M, Kim T, Rho J, Negishi-Koga T, Delaisse JM, Takayanagi H, Lorenzo J, Colonna M, Farndale RW, Choi Y, Trowsdale J (2011) OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice. J Clin Invest 121(9):3505–3516. doi:10.1172/jci45913

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Schultz HS, Nitze LM, Zeuthen LH, Keller P, Gruhler A, Pass J, Chen J, Guo L, Fleetwood AJ, Hamilton JA, Berchtold MW, Panina S 2015 Collagen induces maturation of human monocyte-derived dendritic cells by signaling through osteoclast-associated receptor. J Immunol (Baltimore, Md: 1950) 194(7):3169–3179. doi:10.4049/jimmunol.1402800

    CAS  Article  Google Scholar 

  50. Lakey RL, Morgan TG, Rowan AD, Isaacs JD, Cawston TE, Hilkens CM (2009) A novel paradigm for dendritic cells as effectors of cartilage destruction. Rheumatology (Oxford, England) 48(5):502–507. doi:10.1093/rheumatology/kep040

    Article  Google Scholar 

  51. Hayem G, De Bandt M, Palazzo E, Roux S, Combe B, Eliaou JF, Sany J, Kahn MF, Meyer O (1999) Anti-heat shock protein 70 kDa and 90 kDa antibodies in serum of patients with rheumatoid arthritis. Ann Rheum Dis 58(5):291–296

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Corrigall VM, Vittecoq O, Panayi GS (2009) Binding immunoglobulin protein-treated peripheral blood monocyte-derived dendritic cells are refractory to maturation and induce regulatory T-cell development. Immunology 128(2):218–226. doi:10.1111/j.1365-2567.2009.03103.x

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Stocki P, Wang XN, Dickinson AM (2012) Inducible heat shock protein 70 reduces T cell responses and stimulatory capacity of monocyte-derived dendritic cells. J Biol Chem 287(15):12387–12394. doi:10.1074/jbc.M111.307579

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Rosenthal KS, Mikecz K, Steiner HL 3rd, Glant TT, Finnegan A, Carambula RE, Zimmerman DH (2015) Rheumatoid arthritis vaccine therapies: perspectives and lessons from therapeutic ligand epitope antigen presentation system vaccines for models of rheumatoid arthritis. Expert Rev Vaccines 14(6):891–908. doi:10.1586/14760584.2015.1026330

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Kazantseva MG, Highton J, Stamp LK, Hessian PA (2012) Dendritic cells provide a potential link between smoking and inflammation in rheumatoid arthritis. Arthritis Res Ther 14(5):R208. doi:10.1186/ar4046

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Mastrangelo A, Colasanti T, Barbati C, Pecani A, Sabatinelli D, Pendolino M, Truglia S, Massaro L, Mancini R, Miranda F, Spinelli FR, Conti F, Alessandri C (2015) The role of posttranslational protein modifications in rheumatological diseases: focus on rheumatoid arthritis. J Immunol Res 2015:712490. doi:10.1155/2015/712490

    PubMed  PubMed Central  Article  Google Scholar 

  57. Willemze A, Toes RE, Huizinga TW, Trouw LA (2012) New biomarkers in rheumatoid arthritis. Neth J Med 70(9):392–399

    CAS  PubMed  Google Scholar 

  58. Scally SW, Petersen J, Law SC, Dudek NL, Nel HJ, Loh KL, Wijeyewickrema LC, Eckle SB, van Heemst J, Pike RN, McCluskey J, Toes RE, La Gruta NL, Purcell AW, Reid HH, Thomas R, Rossjohn J (2013) A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J Exp Med 210(12):2569–2582. doi:10.1084/jem.20131241

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Yu H, Yang YH, Rajaiah R, Moudgil KD (2011) Nicotine-induced differential modulation of autoimmune arthritis in the Lewis rat involves changes in interleukin-17 and anti-cyclic citrullinated peptide antibodies. Arthritis Rheum 63(4):981–991. doi:10.1002/art.30219

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Santegoets KC, Wenink MH, Braga FA, Cossu M, Lamers-Karnebeek FB, van Riel PL, Sturm PD, van den Berg WB, Radstake TR (2016) Impaired porphyromonas gingivalis-induced tumor necrosis factor production by dendritic cells typifies patients with rheumatoid arthritis. Arthritis Rheumatol (Hoboken, NJ) 68 (4):795–804. doi:10.1002/art.39514

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. R. Langridge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, M.B., Langridge, W.H.R. The function of myeloid dendritic cells in rheumatoid arthritis. Rheumatol Int 37, 1043–1051 (2017). https://doi.org/10.1007/s00296-017-3671-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-017-3671-z

Keywords

  • Rheumatoid arthritis
  • Dendritic cells
  • Cytokines
  • Joint capsule