Skip to main content
Log in

Association study between the TP53 Rs1042522G/C polymorphism and susceptibility to systemic lupus erythematosus in a Chinese Han population

  • Genes and Disease
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Tumour suppressor protein 53 (p53) plays a central role in apoptosis, cell proliferation and death. Previously studies found contribution of functional p53 Arg72Pro polymorphism (TP53 rs1042522G/C polymorphism) in the development of systemic lupus erythematosus (SLE) remains controversial. In this study, for the first time, we evaluated its association with SLE in a Chinese Han population. This case–control study enrolled 1470 SLE patients and 2283 healthy controls. The genotyping of TP53 rs1042522 polymorphism was determined by Sequenom Mass ARRAY technology. Statistical analysis was conducted by Chi-square test (χ 2 test). Odds ratio (OR) with 95% confidence interval (CI) was calculated using unconditional logistic regression with adjusting age and sex. Allele and genotype frequencies of TP53 rs1042522G/C polymorphism showed statistically significant difference between the SLE patients and the normal controls (C vs. G: OR = 0.89, 95% CI 0.89–0.97, p = 0.01; (GC + CC) vs. GG using recessive model: OR = 0.84, 95% CI 0.73–0.96, p = 0.01; GC vs. GG using co-dominant model: OR = 0.86, 95% CI 0.74–0.99, p = 0.04; CC vs. GG using co-dominant model: OR = 0.80, 95% CI 0.66–0.96, p = 0.02; GC vs. GG using co-dominant model: OR = 0.86, 95% CI 0.74–0.99, p = 0.02). In addition, there was weak association between discoid rash and distribution of TP53 rs1042522G/C polymorphism in SLE patients (C vs. G: OR = 1.25, 95% CI 1.00–1.55, p = 0.04; CC vs. GG using co-dominant model: OR = 1.54, 95% CI 1.10–2.36, p = 0.04). Our finding suggests a significant relationship between the TP53 rs1042522G/C polymorphism and SLE. TP53 rs1042522G/C polymorphism would be promising as an indicator of SLE as well as the therapeutic target if its functions and mechanisms could be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Watanabe N, Takabayashi K (2009) Recent investigations on the basis of pathogenesis of SLE and new therapeutic approaches. Nippon Rinsho 67(3):500–505

    PubMed  Google Scholar 

  2. Wong M, Tsao BP (2006) Current topics in human SLE genetics. Springer Semin Immunopathol 28(2):97–107

    Article  CAS  PubMed  Google Scholar 

  3. Lorenz HM, Herrmann M, Winkler T, Gaipl U, Kalden JR (2000) Role of apoptosis in autoimmunity. Apoptosis 5:443–449

    Article  CAS  PubMed  Google Scholar 

  4. Gaipl US, Munoz LE, Grossmayer G et al (2007) Clearance deficiency and systemic lupus erythematosus (SLE). J Autoimmun 28:114–121

    Article  PubMed  Google Scholar 

  5. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  CAS  PubMed  Google Scholar 

  6. Takatori H, Kawashima H, Suzuki K, Nakajima H (2014) Role of p53 in systemic autoimmune diseases. Crit Rev Immunol 34(6):509–516

    Article  CAS  PubMed  Google Scholar 

  7. Nath SK, Kelly JA, Namjou B et al (2001) Evidence for a susceptibility gene, SLEV1, on chromosome 17p13 in families with vitiligo-related systemic lupus erythematosus. Am J Hum Genet 69:1401–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Johansson CM, Zunec R, Garcia MA et al (2004) Chromosome 17p12-q11 harbors susceptibility loci for systemic lupus erythematosus. Hum Genet 115:230–238

    Article  CAS  PubMed  Google Scholar 

  9. Kovacs B, Patel A, Hershey JN, Dennis GJ, Kirschfink M, Tsokos GC (1997) Antibodies against p53 in sera from patients with systemic lupus erythematosus and other rheumatic diseases. Arthritis Rheum 40:980–982

    Article  CAS  PubMed  Google Scholar 

  10. Miret C, Molina R, Filella X et al (2003) Relationship of p53 with other oncogenes, cytokines and systemic lupus erythematosus activity. Tumour Bio 24:185–188

    Article  CAS  Google Scholar 

  11. Sullivan A, Lu X (2007) ASPP: a new family of oncogenes and tumour suppressor genes. Br J Cancer 96(2):196–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee YH, Rho YH, Choi SJ et al (2005) The functional p53 codon 72 polymorphism is associated with systemic lupus erythematosus. Lupus 14:842–845

    Article  CAS  PubMed  Google Scholar 

  13. Onel KB, Huo D, Hastings D, Fryer-Biggs J, Crow MK, Onel K (2009) Lack of association of the TP53 Arg72Pro SNP and the MDM2 SNP309 with systemic lupus erythematosus in Caucasian, African American, and Asian children and adults. Lupus 18(1):61–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sanchez E, Sabio JM, Callejas JL et al (2006) Study of a functional polymorphism in the p53 gene in systemic lupus erythematosus: lack of replication in a Spanish population. Lupus 15:658–661

    Article  CAS  PubMed  Google Scholar 

  15. Piotrowski P, Lianeri M, Mostowska M, Wudarski M, Chwalinska-Sadowska H, Jagodzinski PP (2008) Contribution of polymorphism in codon 72 of p53 gene to systemic lupus erythematosus in Poland. Lupus 17(2):148–151

    Article  CAS  PubMed  Google Scholar 

  16. Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40(9):1725

    Article  CAS  PubMed  Google Scholar 

  17. Shi YY, He L (2005) SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 15(2):97–98

    Article  CAS  PubMed  Google Scholar 

  18. Li Z, Zhang Z, He Z, Tang W, Li T, Zeng Z, He L et al (2009) A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis. Cell Res 19(4):519–523

    Article  CAS  PubMed  Google Scholar 

  19. Beckman, G., Birgander, R., Sjalander, A., Saha, N., Holmberg, P.A., Kivela, A., et al (1994) Is p53 polymorphism maintained by natural selection? Hum Hered 44(5):266–270

    Article  CAS  PubMed  Google Scholar 

  20. Sjalander, A., Birgander, R., Saha, N., Beckman, L., Beckman, G (1996) p53 polymorphisms and haplotypes show distinct differences between major ethnic groups. Hum Hered. 46(1):41–48.

    Article  CAS  PubMed  Google Scholar 

  21. Bijl M, Limburg PC, Kallenberg CG (2001) New insights into the pathogenesis of systemic lupus erythematosus (SLE): the role of apoptosis. Neth J Med 59(2):66–75

    Article  CAS  PubMed  Google Scholar 

  22. El-Sayed ZA, Farag DH, Eissa S (2003) Tumor suppressor protein p53 and anti-p53 autoantibodies in pediatric rheumatological diseases. Pediatr Allergy Immunol 14:229–233

    Article  PubMed  Google Scholar 

  23. Sakamuro D, Sabbatini P, White E, Prendergast GC (1997) The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene 15:887–898

    Article  CAS  PubMed  Google Scholar 

  24. Chauhan R, Handa R, Das TP, Pati U (2004) Over-expression of TATA binding protein (TBP) and p53 and autoantibodies to these antigens are features of systemic sclerosis, systemic lupus erythematosus and overlap syndromes. Clin Exp Immunol 136:574–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dumont P, Leu JI, Della Pietra AC, George DL et al (2003) The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33(3):357–365

    Article  CAS  PubMed  Google Scholar 

  26. Matlashewski GJ, Tuck S, Pim D et al (1987) Primary structure polymorphism at amino acid residue 72 of human p53. Mol Cell Biol 7:961–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pim D, Banks L (2004) p53 polymorphic variants at codon 72 exert different effects on cell cycle progression. Int J Cancer 108:196–199

    Article  CAS  PubMed  Google Scholar 

  28. Zeng FQ, Yin RF, Tan GZ, Guo Q, Xu DQ (2004) Characterization of DNA antigens from immune complexes deposited in the skin of patients with systemic lupus erythematosus. Chin Med J (Engl) 117(7):1066–1071

    CAS  Google Scholar 

  29. Gabrielli A, Corvetta A, Montroni M, Rupoli S, Danieli G (1985 Sep) Immune deposits in normal skin of patients with systemic lupus erythematosus: relationship to the serum capacity to solubilize immune complexes. Clin Immunol Immunopathol 36(3):266–274

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financed by the Natural Science Foundation of Anhui Province (1608085QH194), Natural Scientific Research Foundation of Anhui University of Traditional Chinese Medicine (2015 ZR002) and Doctoral Scientific Research Foundation of Anhui University of Traditional Chinese Medicine (2014RC001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-wei Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zhu, Jm., Wu, S. et al. Association study between the TP53 Rs1042522G/C polymorphism and susceptibility to systemic lupus erythematosus in a Chinese Han population. Rheumatol Int 37, 523–529 (2017). https://doi.org/10.1007/s00296-017-3662-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-017-3662-0

Keywords

Navigation