Skip to main content
Log in

Baseline increased 18F-fluoride uptake lesions at vertebral corners on positron emission tomography predict new syndesmophyte development in ankylosing spondylitis: a 2-year longitudinal study

  • Imaging
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

The goal of this study was to demonstrate whether increased 18F-fluoride uptake lesions on positron emission tomography (PET) scan can predict new syndesmophyte development in patients with ankylosing spondylitis (AS). In 12 AS patients, 18F-fluoride PET and magnetic resonance imaging (MRI) was performed at baseline, and radiography was performed at baseline and the 2-year follow-up. The following data were recorded: the presence of increased 18F-fluoride uptake lesions on PET defined as an uptake greater than the uptake in the adjacent normal vertebral body; acute (type A) and advanced (type B) corner inflammatory lesions (CILs) and fat lesions on MRI; and syndesmophytes on radiography. Of 231 anterior vertebral corners without syndesmophyte at baseline, 13 type A CILs (5.5%), 2 type B CILs (0.9%), and 20 fat lesions (8.7%) on MRI and six increased fluoride uptake lesions (2.6%) on PET were observed. At the 2-year follow-up, 16 new syndesmophytes (6.9%) in eight AS patients (66.7%) occurred. New syndesmophytes developed significantly more frequently in anterior vertebral corners with increased 18F-fluoride uptake lesions (50%) or fat lesions (25%) at baseline than in those without such lesions (5.8 and 5.2%; p = 0.005 and p = 0.007, respectively). After adjusting confounding factors, baseline increased 18F-fluoride uptake lesions was independently associated with new syndesmophytes development (OR 13.8, 95% CI 1.5–124.3, p = 0.019). Fat lesions were also associated with new syndesmophytes formation. Our data suggest that 18F-fluoride PET may be applied to identify AS patients with high risk of future syndesmophyte formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lories RJ, Haroon N (2014) Bone formation in axial spondyloarthritis. Best Pract Res Clin Rheumatol 28 (5):765–777. doi:10.1016/j.berh.2014.10.008

    Article  PubMed  Google Scholar 

  2. Louie GH, Ward MM (2014) Measurement and treatment of radiographic progression in ankylosing spondylitis: lessons learned from observational studies and clinical trials. Curr Opin Rheumatol 26(2):145–150. doi:10.1097/BOR.0000000000000025

    Article  PubMed  PubMed Central  Google Scholar 

  3. Baraliakos X, Listing J, Rudwaleit M, Brandt J, Sieper J, Braun J (2005) Radiographic progression in patients with ankylosing spondylitis after 2 years of treatment with the tumour necrosis factor alpha antibody infliximab. Ann Rheum Dis 64(10):1462–1466. doi:10.1136/ard.2004.033472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. van der Heijde D, Landewe R, Einstein S, Ory P, Vosse D, Ni L, Lin SL, Tsuji W, Davis JC Jr (2008) Radiographic progression of ankylosing spondylitis after up to two years of treatment with etanercept. Arthritis Rheum 58(5):1324–1331. doi:10.1002/art.23471

    Article  PubMed  Google Scholar 

  5. van der Heijde D, Salonen D, Weissman BN, Landewe R, Maksymowych WP, Kupper H, Ballal S, Gibson E, Wong R (2009) Assessment of radiographic progression in the spines of patients with ankylosing spondylitis treated with adalimumab for up to 2 years. Arthritis Res Ther 11(4):R127. doi:10.1186/ar2794

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rudwaleit M, Baraliakos X, Listing J, Brandt J, Sieper J, Braun J (2005) Magnetic resonance imaging of the spine and the sacroiliac joints in ankylosing spondylitis and undifferentiated spondyloarthritis during treatment with etanercept. Ann Rheum Dis 64(9):1305–1310. doi:10.1136/ard.2004.032441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maksymowych WP, Chiowchanwisawakit P, Clare T, Pedersen SJ, Ostergaard M, Lambert RG (2009) Inflammatory lesions of the spine on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis: evidence of a relationship between inflammation and new bone formation. Arthritis Rheum 60(1):93–102. doi:10.1002/art.24132

    Article  PubMed  Google Scholar 

  8. Pedersen SJ, Chiowchanwisawakit P, Lambert RG, Ostergaard M, Maksymowych WP (2011) Resolution of inflammation following treatment of ankylosing spondylitis is associated with new bone formation. J Rheumatol 38(7):1349–1354. doi:10.3899/jrheum.100925

    Article  CAS  PubMed  Google Scholar 

  9. Chiowchanwisawakit P, Lambert RG, Conner-Spady B, Maksymowych WP (2011) Focal fat lesions at vertebral corners on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis. Arthritis Rheum 63(8):2215–2225. doi:10.1002/art.30393

    Article  PubMed  Google Scholar 

  10. van der Heijde D, Machado P, Braun J, Hermann KG, Baraliakos X, Hsu B, Baker D, Landewe R (2012) MRI inflammation at the vertebral unit only marginally predicts new syndesmophyte formation: a multilevel analysis in patients with ankylosing spondylitis. Ann Rheum Dis 71(3):369–373. doi:10.1136/annrheumdis-2011-200208

    Article  PubMed  Google Scholar 

  11. Baraliakos X, Heldmann F, Callhoff J, Listing J, Appelboom T, Brandt J, Van den Bosch F, Breban M, Burmester G, Dougados M, Emery P, Gaston H, Grunke M, Van Der Horst-Bruinsma IE, Landewe R, Leirisalo-Repo M, Sieper J, De Vlam K, Pappas D, Kiltz U, Van Der Heijde D, Braun J (2013) Which spinal lesions are associated with new bone formation in patients with ankylosing spondylitis treated with anti-TNF agents? A long-term observational study using MRI and conventional radiography. Ann Rheum Dis doi:10.1136/annrheumdis-2013-203425

    Google Scholar 

  12. Maksymowych WP, Morency N, Conner-Spady B, Lambert RG (2013) Suppression of inflammation and effects on new bone formation in ankylosing spondylitis: evidence for a window of opportunity in disease modification. Ann Rheum Dis 72(1):23–28. doi:10.1136/annrheumdis-2011-200859

    Article  PubMed  Google Scholar 

  13. Machado PM, Baraliakos X, van der Heijde D, Braun J, Landewe R (2015) MRI vertebral corner inflammation followed by fat deposition is the strongest contributor to the development of new bone at the same vertebral corner: a multilevel longitudinal analysis in patients with ankylosing spondylitis. Ann Rheum Dis. doi:10.1136/annrheumdis-2015-208011

    PubMed Central  Google Scholar 

  14. Maksymowych WP (2010) Disease modification in ankylosing spondylitis. Nat Rev Rheumatol 6(2):75–81. doi:10.1038/nrrheum.2009.258

    Article  PubMed  Google Scholar 

  15. Baraliakos X, Listing J, Rudwaleit M, Sieper J, Braun J (2008) The relationship between inflammation and new bone formation in patients with ankylosing spondylitis. Arthritis Res Ther 10(5):R104. doi:10.1186/ar2496

    Article  PubMed  PubMed Central  Google Scholar 

  16. Appel H, Loddenkemper C, Grozdanovic Z, Ebhardt H, Dreimann M, Hempfing A, Stein H, Metz-Stavenhagen P, Rudwaleit M, Sieper J (2006) Correlation of histopathological findings and magnetic resonance imaging in the spine of patients with ankylosing spondylitis. Arthritis Res Ther 8(5):R143. doi:10.1186/ar2035

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li Y, Schiepers C, Lake R, Dadparvar S, Berenji GR (2012) Clinical utility of (18)F-fluoride PET/CT in benign and malignant bone diseases. Bone 50(1):128–139. doi:10.1016/j.bone.2011.09.053

    Article  PubMed  Google Scholar 

  18. Hsu WK, Virk MS, Feeley BT, Stout DB, Chatziioannou AF, Lieberman JR (2008) Characterization of osteolytic, osteoblastic, and mixed lesions in a prostate cancer mouse model using 18F-FDG and 18F-fluoride PET/CT. J Nucl Med 49(3):414–421. doi:10.2967/jnumed.107.045666

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tan AL, Tanner SF, Waller ML, Hensor EM, Burns A, Jeavons AP, Bury RF, Emery P, McGonagle D (2013) High-resolution [18F]fluoride positron emission tomography of the distal interphalangeal joint in psoriatic arthritis–a bone-enthesis-nail complex. Rheumatology 52(5):898–904. doi:10.1093/rheumatology/kes384

    Article  PubMed  Google Scholar 

  20. Bruijnen ST, van der Weijden MA, Klein JP, Hoekstra OS, Boellaard R, van Denderen JC, Dijkmans BA, Voskuyl AE, van der Horst-Bruinsma IE, van der Laken CJ (2012) Bone formation rather than inflammation reflects ankylosing spondylitis activity on PET-CT: a pilot study. Arthritis Res Ther 14(2):R71. doi:10.1186/ar3792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Darrieutort-Laffite C, Ansquer C, Maugars Y, Le Goff B, Bodere F, Berthelot JM (2015) Sodium (18)F-sodium fluoride PET failed to predict responses to TNFalpha antagonist therapy in 31 patients with possible spondyloarthritis not meeting ASAS criteria. Jt Bone Spine 82 (6):411–416. doi:10.1016/j.jbspin.2015.08.012

    Article  CAS  Google Scholar 

  22. Lee SG, Kim IJ, Kim KY, Kim HY, Park KJ, Kim SJ, Park EK, Jeon YK, Yang BY, Kim GT (2015) Assessment of bone synthetic activity in inflammatory lesions and syndesmophytes in patients with ankylosing spondylitis: the potential role of 18F-fluoride positron emission tomography-magnetic resonance imaging. Clin Exp Rheumatol 33(1):90–97

    PubMed  Google Scholar 

  23. Buchbender C, Ostendorf B, Ruhlmann V, Heusch P, Miese F, Beiderwellen K, Schneider M, Braun J, Antoch G, Baraliakos X (2015) Hybrid 18F-labeled fluoride positron emission tomography/magnetic resonance (MR) imaging of the sacroiliac joints and the spine in patients with axial spondyloarthritis: a pilot study exploring the link of mr bone pathologies and increased osteoblastic activity. J Rheumatol 42(9):1631–1637. doi:10.3899/jrheum.150250

    Article  CAS  PubMed  Google Scholar 

  24. Toussirot E, Caoduro C, Ungureanu C, Michel F, Runge M, Boulahdour H (2015) 18F- fluoride PET/CT assessment in patients fulifilling the clinical arm of the ASAS criteria for axial spondyloarthritis. A comparative study with ankylosing spondylitis. Clin Exp Rheumatol 33(4):588

    PubMed  Google Scholar 

  25. van der Linden S, Valkenburg HA, Cats A (1984) Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum 27(4):361–368

    Article  PubMed  Google Scholar 

  26. Dougados M, Simon P, Braun J, Burgos-Vargas R, Maksymowych WP, Sieper J, van der Heijde D (2011) ASAS recommendations for collecting, analysing and reporting NSAID intake in clinical trials/epidemiological studies in axial spondyloarthritis. Ann Rheum Dis 70(2):249–251. doi:10.1136/ard.2010.133488

    Article  CAS  PubMed  Google Scholar 

  27. Lambert RGW, Pedersen SJ, Maksymowych WP, Chiowchanwisawakit P, Ostergaard M (2009) Active inflammatory lesions detected by magnetic resonance imaging in the spine of patients with spondyloarthritis - definitions, assessment system, and reference image set. J Rheumatol 84(0):3–17. doi:10.3899/jrheum.090616

    Google Scholar 

  28. Creemers MC, Franssen MJ, van’t Hof MA, Gribnau FW, van de Putte LB, van Riel PL (2005) Assessment of outcome in ankylosing spondylitis: an extended radiographic scoring system. Ann Rheum Dis 64(1):127–129. doi:10.1136/ard.2004.020503

    Article  CAS  PubMed  Google Scholar 

  29. Wong KK, Piert M (2013) Dynamic bone imaging with 99mTc-labeled diphosphonates and 18F-NaF: mechanisms and applications. J Nucl Med 54(4):590–599. doi:10.2967/jnumed.112.114298

    Article  CAS  PubMed  Google Scholar 

  30. Raynor W, Houshmand S, Gholami S, Emamzadehfard S, Rajapakse CS, Blomberg BA, Werner TJ, Hoilund-Carlsen PF, Baker JF, Alavi A (2016) Evolving role of molecular imaging with (18)F-sodium fluoride PET as a biomarker for calcium metabolism. Curr Osteoporos Rep 14(4):115–125. doi:10.1007/s11914-016-0312-5

    Article  PubMed  Google Scholar 

  31. Jadvar H, Desai B, Conti PS (2015) Sodium 18F-fluoride PET/CT of bone, joint, and other disorders. Semin Nucl Med 45(1):58–65. doi:10.1053/j.semnuclmed.2014.07.008

    Article  PubMed  PubMed Central  Google Scholar 

  32. Strobel K, Fischer DR, Tamborrini G, Kyburz D, Stumpe KD, Hesselmann RG, Johayem A, von Schulthess GK, Michel BA, Ciurea A (2010) 18F-fluoride PET/CT for detection of sacroiliitis in ankylosing spondylitis. Eur J Nucl Med Mol Imaging 37(9):1760–1765. doi:10.1007/s00259-010-1464-7

    Article  PubMed  Google Scholar 

  33. Lories RJ, Luyten FP, de Vlam K (2009) Progress in spondylarthritis. Mechanisms of new bone formation in spondyloarthritis. Arthritis Res Ther 11(2):221. doi:10.1186/ar2642

    Article  PubMed  PubMed Central  Google Scholar 

  34. Haroon N (2015) Ankylosis in ankylosing spondylitis: current concepts. Clin Rheumatol 34(6):1003–1007. doi:10.1007/s10067-015-2956-4

    Article  PubMed  Google Scholar 

  35. Maksymowych WP, Wichuk S, Chiowchanwisawakit P, Lambert RG, Pedersen SJ (2014) Fat metaplasia and backfill are key intermediaries in the development of sacroiliac joint ankylosis in patients with ankylosing spondylitis. Arthritis Rheumatol 66 (11):2958–2967. doi:10.1002/art.38792

    Article  PubMed  Google Scholar 

  36. Kang KY, Kim IJ, Yoon MA, Hong YS, Park SH, Ju JH (2015) Fat metaplasia on sacroiliac joint magnetic resonance imaging at baseline is associated with spinal radiographic progression in patients with axial spondyloarthritis. PloS one 10(8):e0135206. doi:10.1371/journal.pone.0135206

    Article  PubMed  PubMed Central  Google Scholar 

  37. Neumann E, Junker S, Schett G, Frommer K, Muller-Ladner U (2016) Adipokines in bone disease. Nat Rev Rheumatol 12(5):296–302. doi:10.1038/nrrheum.2016.49

    Article  CAS  PubMed  Google Scholar 

  38. Syrbe U, Callhoff J, Conrad K, Poddubnyy D, Haibel H, Junker S, Frommer KW, Muller-Ladner U, Neumann E, Sieper J (2015) Serum adipokine levels in patients with ankylosing spondylitis and their relationship to clinical parameters and radiographic spinal progression. Arthritis Rheumatol 67 (3):678–685. doi:10.1002/art.38968

    Article  CAS  PubMed  Google Scholar 

  39. Tan S, Wang R, Ward MM (2015) Syndesmophyte growth in ankylosing spondylitis. Curr Opin Rheumatol 27(4):326–332. doi:10.1097/BOR.0000000000000179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wanders A, Heijde D, Landewe R, Behier JM, Calin A, Olivieri I, Zeidler H, Dougados M (2005) Nonsteroidal antiinflammatory drugs reduce radiographic progression in patients with ankylosing spondylitis: a randomized clinical trial. Arthritis Rheum 52(6):1756–1765. doi:10.1002/art.21054

    Article  CAS  PubMed  Google Scholar 

  41. Sieper J, Listing J, Poddubnyy D, Song IH, Hermann KG, Callhoff J, Syrbe U, Braun J, Rudwaleit M (2016) Effect of continuous versus on-demand treatment of ankylosing spondylitis with diclofenac over 2 years on radiographic progression of the spine: results from a randomised multicentre trial (ENRADAS). Ann Rheum Dis 75(8):1438–1443. doi:10.1136/annrheumdis-2015-207897

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We specially thank the late Professor Sung-Il Kim who devoted himself to education, research, and patient care in the Division of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine (1963–2011).

Funding

This work was supported by clinical research grant from Pusan National University Hospital 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Geun Lee.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest.

Additional information

Eun-Kyoung Park and Kyoungjune Pak have equally contributed on this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, EK., Pak, K., Park, JH. et al. Baseline increased 18F-fluoride uptake lesions at vertebral corners on positron emission tomography predict new syndesmophyte development in ankylosing spondylitis: a 2-year longitudinal study. Rheumatol Int 37, 765–773 (2017). https://doi.org/10.1007/s00296-017-3660-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-017-3660-2

Keywords

Navigation