Skip to main content

Advertisement

Log in

Innate immune cells in the pathogenesis of primary systemic vasculitis

  • Review Article - Pathogenesis Reviews
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Innate immune system forms the first line of defense against foreign substances. Neutrophils, eosinophils, erythrocytes, platelets, monocytes, macrophages, dendritic cells, γδ T cells, natural killer and natural killer T cells comprise the innate immune system. Genetic polymorphisms influencing the activation of innate immune cells predispose to development of vasculitis and influence its severity. Abnormally activated innate immune cells cross-talk with other cells of the innate immune system, present antigens more efficiently and activate T and B lymphocytes and cause tissue destruction via cell-mediated cytotoxicity and release of pro-inflammatory cytokines. These secreted cytokines further recruit other cells to the sites of vascular injury. They are involved in both the initiation as well as the perpetuation of vasculitis. Evidences suggest reversal of aberrant activation of immune cells in response to therapy. Understanding the role of innate immune cells in vasculitis helps understand the potential of therapeutic modulation of their activation to treat vasculitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AAV:

ANCA-associated vasculitis

ADA:

Adenosine deaminase

ANCA:

Anti-neutrophil cytoplasmic antibodies

AxV:

Annexin V

BD:

Behcet’s disease

BVAS:

Birmingham Vasculitis Activity Score

CCL:

Chemokine ligand

CCR:

Chemokine receptor

CD:

Cluster of differentiation

CD40L:

CD 40 ligand

CECR:

Cat eye syndrome chromosome region

DAMP:

Disease-associated molecular pattern

DC:

Dendritic cells

DNA:

Deoxyribonucleic acid

ECP:

Eosinophil cationic protein

EGPA:

Eosinophilic granulomatosis with polyangiitis

ERK:

Extracellular signal-regulated kinase

FcγR:

Fc gamma receptor

GCA:

Giant cell arteritis

γδ T cells:

Gamma delta T cells

GPA:

Granulomatosis with polyangiitis

GWAS:

Genome-wide associated studies

HLA:

Human leukocyte antigen

HMGB:

High mobility group box

HSP:

Henoch–Schonlein purpura

IFN:

Interferon

Ig:

Immunoglobulin

IL:

Interleukin

IVIG:

Intravenous immunoglobulin

KD:

Kawasaki’s disease

LAMP:

Lysosomal associated membrane protein

LPS:

Lipopolysaccharide

MAP:

Mitogen-activated protein

MDC:

Myeloid dendritic cell

MPA:

Microscopic polyangiitis

MPO:

Myeloperoxidase

mRNA:

Microribonucleic acid

NET:

Neutrophil extracellular traps

NOD:

Non-obese diabetic

NK cell:

Natural killer cell

NKT cell:

Natural killer T cell

PDC:

Plasmacytoid dendritic cell

PI3K:

Phosphatidyl inositol-3 kinase

PMA:

Phorbol myristate acetate

PMP:

Platelet-derived microparticles

PR-3:

Proteinase-3

RAG:

Recombinase-associated gene

RAGE:

Receptor for advanced glycation end products

SCID:

Severe combined immunodeficiency

TA:

Takayasu’s arteritis

TCR:

T cell receptor

Th:

Helper T lymphocytes

TLR:

Toll-like receptor

Treg:

T regulatory cells

References

  1. Gasparyan AY, Ayvazyan L, Blackmore H, Kitas GD (2011) Writing a narrative biomedical review: considerations for authors, peer reviewers, and editors. Rheumatol Int 31:1409–1417. doi:10.1007/s00296-011-1999-3

    Article  PubMed  Google Scholar 

  2. Lyons PA, Rayner TF, Trivedi S et al (2012) Genetically distinct subsets within ANCA-associated vasculitis. N Engl J Med 367:214–223. doi:10.1056/NEJMoa1108735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Morris H, Morgan MD, Wood AM et al (2011) ANCA-associated vasculitis is linked to carriage of the Z allele of alpha(1) antitrypsin and its polymers. Ann Rheum Dis 70:1851–1856. doi:10.1136/ard.2011.153569

    Article  CAS  PubMed  Google Scholar 

  4. Xiao H, Heeringa P, Hu P et al (2002) Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J Clin Invest 110:955–963. doi:10.1172/jci15918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Jennette JC, Falk RJ, Hu P, Xiao H (2013) Pathogenesis of antineutrophil cytoplasmic autoantibody-associated small-vessel vasculitis. Annu Rev Pathol 8:139–160. doi:10.1146/annurev-pathol-011811-132453

    Article  CAS  PubMed  Google Scholar 

  6. Schreiber A, Xiao H, Falk RJ, Jennette JC (2006) Bone marrow-derived cells are sufficient and necessary targets to mediate glomerulonephritis and vasculitis induced by anti-myeloperoxidase antibodies. J Am Soc Nephrol 17:3355–3364. doi:10.1681/asn.2006070718

    Article  PubMed  Google Scholar 

  7. Primo VC, Marusic S, Franklin CC et al (2010) Anti-PR3 immune responses induce segmental and necrotizing glomerulonephritis. Clin Exp Immunol 159:327–337. doi:10.1111/j.1365-2249.2009.04072.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Little MA, Al-Ani B, Ren S et al (2012) Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies recapitulate systemic vasculitis in mice with a humanized immune system. PLoS One 7:e28626. doi:10.1371/journal.pone.0028626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hattar K, Oppermann S, Ankele C et al (2010) c-ANCA-induced neutrophil-mediated lung injury: a model of acute Wegener’s granulomatosis. Eur Respir J 36:187–195. doi:10.1183/09031936.00143308

    Article  CAS  PubMed  Google Scholar 

  10. Xiao H, Heeringa P, Liu Z et al (2005) The role of neutrophils in the induction of glomerulonephritis by anti-myeloperoxidase antibodies. Am J Pathol 167:39–45. doi:10.1016/s0002-9440(10)62951-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Schreiber A, Xiao H, Jennette JC et al (2009) C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J Am Soc Nephrol 20:289–298. doi:10.1681/asn.2008050497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wang C, Wang H, Chang DY et al (2015) High mobility group box 1 contributes to anti-neutrophil cytoplasmic antibody-induced neutrophils activation through receptor for advanced glycation end products (RAGE) and Toll-like receptor 4. Arthritis Res Ther 17:64. doi:10.1186/s13075-015-0587-4

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Hao J, Meng LQ, Xu PC, Chen M, Zhao MH (2012) p38MAPK, ERK and PI3K signaling pathways are involved in C5a-primed neutrophils for ANCA-mediated activation. PLoS One 7:e38317. doi:10.1371/journal.pone.0038317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Yoshida M, Sasaki M, Sugisaki K, Yamaguchi Y, Yamada M (2013) Neutrophil extracellular trap components in fibrinoid necrosis of the kidney with myeloperoxidase-ANCA-associated vasculitis. Clin Kidney J 6:308–312. doi:10.1093/ckj/sft048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kessenbrock K, Krumbholz M, Schonermarck U et al (2009) Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 15:623–625. doi:10.1038/nm.1959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Nakazawa D, Shida H, Tomaru U et al (2014) Enhanced formation and disordered regulation of NETs in myeloperoxidase-ANCA-associated microscopic polyangiitis. J Am Soc Nephrol 25:990–997. doi:10.1681/asn.2013060606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Wang H, Wang C, Zhao MH, Chen M (2015) Neutrophil extracellular traps can activate alternative complement pathways. Clin Exp Immunol 181:518–527. doi:10.1111/cei.12654

    Article  CAS  PubMed  Google Scholar 

  18. Kain R, Exner M, Brandes R et al (2008) Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat Med 14:1088–1096. doi:10.1038/nm.1874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Tang S, Zhang Y, Yin SW et al (2015) Neutrophil extracellular trap formation is associated with autophagy-related signalling in ANCA-associated vasculitis. Clin Exp Immunol 180:408–418. doi:10.1111/cei.12589

    Article  CAS  PubMed  Google Scholar 

  20. Suzuki K, Nagao T, Itabashi M et al (2014) A novel autoantibody against moesin in the serum of patients with MPO-ANCA-associated vasculitis. Nephrol Dial Transplant 29:1168–1177. doi:10.1093/ndt/gft469

    Article  CAS  PubMed  Google Scholar 

  21. Halbwachs L, Lesavre P (2012) Endothelium-neutrophil interactions in ANCA-associated diseases. J Am Soc Nephrol 23:1449–1461. doi:10.1681/asn.2012020119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hong Y, Eleftheriou D, Hussain AA et al (2012) Anti-neutrophil cytoplasmic antibodies stimulate release of neutrophil microparticles. J Am Soc Nephrol 23:49–62. doi:10.1681/asn.2011030298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kambas K, Chrysanthopoulou A, Vassilopoulos D et al (2014) Tissue factor expression in neutrophil extracellular traps and neutrophil derived microparticles in antineutrophil cytoplasmic antibody associated vasculitis may promote thromboinflammation and the thrombophilic state associated with the disease. Ann Rheum Dis 73:1854–1863. doi:10.1136/annrheumdis-2013-203430

    Article  CAS  PubMed  Google Scholar 

  24. Huang YM, Wang H, Wang C, Chen M, Zhao MH (2015) C5a inducing tissue factor expressing microparticles and neutrophil extracellular traps promote hypercoagulability in ANCA-associated vasculitis. Arthritis Rheumatol. doi:10.1002/art.39239

    PubMed Central  Google Scholar 

  25. Cattaneo R, Fenini MG, Facchetti F (1986) The cryoglobulinemic vasculitis. Ric Clin Lab 16:327–333

    CAS  PubMed  Google Scholar 

  26. Moser R, Etter H, Oligati L, Fehr J (1995) Neutrophil activation in response to immune complex-bearing endothelial cells depends on the functional cooperation of Fc gamma RII (CD32) and Fc gamma RIII (CD16). J Lab Clin Med 126:588–596

    CAS  PubMed  Google Scholar 

  27. Zheng W, Warner R, Ruggeri R et al (2015) PF-1355, a mechanism-based myeloperoxidase inhibitor, prevents immune complex vasculitis and anti-glomerular basement membrane glomerulonephritis. J Pharmacol Exp Ther 353:288–298. doi:10.1124/jpet.114.221788

    Article  CAS  PubMed  Google Scholar 

  28. Takahashi K, Oharaseki T, Naoe S, Wakayama M, Yokouchi Y (2005) Neutrophilic involvement in the damage to coronary arteries in acute stage of Kawasaki disease. Pediatr Int 47:305–310. doi:10.1111/j.1442-200x.2005.02049.x

    Article  PubMed  Google Scholar 

  29. Navon Elkan P, Pierce SB, Segel R et al (2014) Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med 370:921–931. doi:10.1056/NEJMoa1307362

    Article  PubMed  CAS  Google Scholar 

  30. Belot A, Wassmer E, Twilt M et al (2014) Mutations in CECR1 associated with a neutrophil signature in peripheral blood. Pediatr Rheumatol Online J 12:44. doi:10.1186/1546-0096-12-44

    Article  PubMed Central  PubMed  Google Scholar 

  31. Kobayashi T, Kimura H, Okada Y et al (2007) Increased CD11b expression on polymorphonuclear leucocytes and cytokine profiles in patients with Kawasaki disease. Clin Exp Immunol 148:112–118. doi:10.1111/j.1365-2249.2007.03326.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Heidari B, Amin R, Kashef S et al (2014) Expression of CD11b as an adhesion molecule on neutrophils in children with Kawasaki disease. Iran J Allergy Asthma Immunol 13:265–270

    PubMed  Google Scholar 

  33. Seko Y, Minota S, Kawasaki A et al (1994) Perforin-secreting killer cell infiltration and expression of a 65-kD heat-shock protein in aortic tissue of patients with Takayasu’s arteritis. J Clin Invest 93:750–758. doi:10.1172/jci117029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Saadoun D, Garrido M, Comarmond C et al (2015) Th1 and th17 cytokines drive inflammation in Takayasu arteritis. Arthritis Rheumatol 67:1353–1360. doi:10.1002/art.39037

    Article  CAS  PubMed  Google Scholar 

  35. Deng J, Younge BR, Olshen RA, Goronzy JJ, Weyand CM (2010) Th17 and Th1 T-cell responses in giant cell arteritis. Circulation 121:906–915. doi:10.1161/circulationaha.109.872903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Nadkarni S, Dalli J, Hollywood J et al (2014) Investigational analysis reveals a potential role for neutrophils in giant-cell arteritis disease progression. Circ Res 114:242–248. doi:10.1161/circresaha.114.301374

    Article  CAS  PubMed  Google Scholar 

  37. Kobayashi M, Ito M, Nakagawa A et al (2000) Neutrophil and endothelial cell activation in the vasa vasorum in vasculo-Behcet disease. Histopathology 36:362–371

    Article  CAS  PubMed  Google Scholar 

  38. Ozluk E, Balta I, Akoguz O et al (2014) Histopathologic study of pathergy test in Behcet’s disease. Indian J Dermatol 59:630. doi:10.4103/0019-5154.143568

    PubMed Central  PubMed  Google Scholar 

  39. Neves FS, Carrasco S, Goldenstein-Schainberg C, Goncalves CR, de Mello SB (2009) Neutrophil hyperchemotaxis in Behcet’s disease: a possible role for monocytes orchestrating bacterial-induced innate immune responses. Clin Rheumatol 28:1403–1410. doi:10.1007/s10067-009-1261-5

    Article  PubMed  Google Scholar 

  40. Na SY, Park MJ, Park S, Lee ES (2013) Up-regulation of Th17 and related cytokines in Behcet’s disease corresponding to disease activity. Clin Exp Rheumatol 31:32–40

    PubMed  Google Scholar 

  41. Churg J, Strauss L (1951) Allergic granulomatosis, allergic angiitis, and periarteritis nodosa. Am J Pathol 27:277–301

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Jakiela B, Szczeklik W, Plutecka H et al (2012) Increased production of IL-5 and dominant Th2-type response in airways of Churg–Strauss syndrome patients. Rheumatology (Oxford) 51:1887–1893. doi:10.1093/rheumatology/kes171

    Article  CAS  Google Scholar 

  43. Terrier B, Bieche I, Maisonobe T et al (2010) Interleukin-25: a cytokine linking eosinophils and adaptive immunity in Churg–Strauss syndrome. Blood 116:4523–4531. doi:10.1182/blood-2010-02-267542

    Article  CAS  PubMed  Google Scholar 

  44. Manger BJ, Krapf FE, Gramatzki M et al (1985) IgE-containing circulating immune complexes in Churg–Strauss vasculitis. Scand J Immunol 21:369–373

    Article  CAS  PubMed  Google Scholar 

  45. Pepper RJ, Fabre MA, Pavesio C et al (2008) Rituximab is effective in the treatment of refractory Churg–Strauss syndrome and is associated with diminished T-cell interleukin-5 production. Rheumatology (Oxford) 47:1104–1105. doi:10.1093/rheumatology/ken175

    Article  CAS  Google Scholar 

  46. Meziane H, Maakel ML, Vachier I, Bousquet J, Chanez P (2001) Sputum eosinophilia in Churg–Strauss syndrome. Respir Med 95:799–801. doi:10.1053/rmed.2001.1163

    Article  CAS  PubMed  Google Scholar 

  47. Guilpain P, Auclair JF, Tamby MC et al (2007) Serum eosinophil cationic protein: a marker of disease activity in Churg–Strauss syndrome. Ann N Y Acad Sci 1107:392–399. doi:10.1196/annals.1381.041

    Article  CAS  PubMed  Google Scholar 

  48. Zwerina J, Bach C, Martorana D et al (2011) Eotaxin-3 in Churg–Strauss syndrome: a clinical and immunogenetic study. Rheumatology (Oxford) 50:1823–1827. doi:10.1093/rheumatology/keq445

    Article  CAS  Google Scholar 

  49. Terai M, Yasukawa K, Honda T et al (2002) Peripheral blood eosinophilia and eosinophil accumulation in coronary microvessels in acute Kawasaki disease. Pediatr Infect Dis J 21:777–781. doi:10.1097/01.inf.0000024004.22235.ac

    Article  PubMed  Google Scholar 

  50. Kuo HC, Yang KD, Liang CD et al (2007) The relationship of eosinophilia to intravenous immunoglobulin treatment failure in Kawasaki disease. Pediatr Allergy Immunol 18:354–359. doi:10.1111/j.1399-3038.2007.00516.x

    Article  PubMed  Google Scholar 

  51. D’Alessandro A, Righetti PG, Zolla L (2010) The red blood cell proteome and interactome: an update. J Proteome Res 9:144–163. doi:10.1021/pr900831f

    Article  PubMed  CAS  Google Scholar 

  52. Puddu P, Puddu GM, Cravero E, Muscari S, Muscari A (2010) The involvement of circulating microparticles in inflammation, coagulation and cardiovascular diseases. Can J Cardiol 26:140–145

    Article  PubMed  Google Scholar 

  53. Buzas EI, Gyorgy B, Nagy G, Falus A, Gay S (2014) Emerging role of extracellular vesicles in inflammatory diseases. Nat Rev Rheumatol 10:356–364. doi:10.1038/nrrheum.2014.19

    Article  CAS  PubMed  Google Scholar 

  54. Isik T, Kurt M, Ayhan E et al (2012) Relation of red cell distribution width with presence and severity of coronary artery ectasia. Clin Appl Thromb Hemost 18:441–447. doi:10.1177/1076029612447678

    Article  PubMed  Google Scholar 

  55. Gungor B, Ozcan KS, Karadeniz FO et al (2014) Red cell distribution width is increased in patients with ascending aortic dilatation. Turk Kardiyol Dern Ars 42:227–235. doi:10.5543/tkda.2014.77508

    Article  PubMed  Google Scholar 

  56. Rondina MT, Weyrich AS, Zimmerman GA (2013) Platelets as cellular effectors of inflammation in vascular diseases. Circ Res 112:1506–1519. doi:10.1161/circresaha.113.300512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Willeke P, Kumpers P, Schluter B et al (2015) Platelet counts as a biomarker in ANCA-associated vasculitis. Scand J Rheumatol 44:302–308. doi:10.3109/03009742.2015.1006247

    Article  CAS  PubMed  Google Scholar 

  58. Tomasson G, Lavalley M, Tanriverdi K et al (2011) Relationship between markers of platelet activation and inflammation with disease activity in Wegener’s granulomatosis. J Rheumatol 38:1048–1054. doi:10.3899/jrheum.100735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Kraemer BF, Campbell RA, Schwertz H et al (2011) Novel anti-bacterial activities of beta-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation. PLoS Pathog 7:e1002355. doi:10.1371/journal.ppat.1002355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Stegeman CA, Tervaert JW, de Jong PE, Kallenberg CG (1996) Trimethoprim-sulfamethoxazole (co-trimoxazole) for the prevention of relapses of Wegener’s granulomatosis. Dutch Co-Trimoxazole Wegener Study Group. N Engl J Med 335:16–20. doi:10.1056/nejm199607043350103

    Article  CAS  PubMed  Google Scholar 

  61. Brogan PA, Shah V, Brachet C et al (2004) Endothelial and platelet microparticles in vasculitis of the young. Arthritis Rheum 50:927–936. doi:10.1002/art.20199

    Article  CAS  PubMed  Google Scholar 

  62. Daniel L, Fakhouri F, Joly D et al (2006) Increase of circulating neutrophil and platelet microparticles during acute vasculitis and hemodialysis. Kidney Int 69:1416–1423. doi:10.1038/sj.ki.5000306

    Article  CAS  PubMed  Google Scholar 

  63. Meijer-Jorna LB, Mekkes JR, van der Wal AC (2002) Platelet involvement in cutaneous small vessel vasculitis. J Cutan Pathol 29:176–180

    Article  PubMed  Google Scholar 

  64. Yamamoto T, Chikugo T, Tanaka Y (2002) Elevated plasma levels of beta-thromboglobulin and platelet factor 4 in patients with rheumatic disorders and cutaneous vasculitis. Clin Rheumatol 21:501–504. doi:10.1007/s100670200123

    Article  CAS  PubMed  Google Scholar 

  65. Culic S, Jakl R, Metlicic V et al (2001) Platelet function analysis in children with Schonlein–Henoch syndrome. Arch Med Res 32:268–272

    Article  CAS  PubMed  Google Scholar 

  66. Levin M, Holland PC, Nokes TJ et al (1985) Platelet immune complex interaction in pathogenesis of Kawasaki disease and childhood polyarteritis. Br Med J (Clin Res Ed) 290:1456–1460

    Article  CAS  Google Scholar 

  67. Wang CL, Wu YT, Liu CA et al (2003) Expression of CD40 ligand on CD4+ T-cells and platelets correlated to the coronary artery lesion and disease progress in Kawasaki disease. Pediatrics 111:E140–E147

    Article  PubMed  Google Scholar 

  68. Gonzalez-Alegre P, Ruiz-Lopez AD, Abarca-Costalago M, Gonzalez-Santos P (2001) Increment of the platelet count in temporal arteritis: response to therapy and ischemic complications. Eur Neurol 45:43–45

    Article  CAS  PubMed  Google Scholar 

  69. Balta I, Balta S, Koryurek OM et al (2014) Mean platelet volume is associated with aortic arterial stiffness in patients with Behcet’s disease without significant cardiovascular involvement. J Eur Acad Dermatol Venereol 28:1388–1393. doi:10.1111/jdv.12297

    Article  CAS  PubMed  Google Scholar 

  70. Tang Z, Wu Y, Hu W et al (2001) The distribution and significance of renal infiltrating cells in patients with diffuse crescentic glomerulonephritis. Chin Med J (Engl) 114:1267–1269

    CAS  Google Scholar 

  71. Rastaldi MP, Ferrario F, Crippa A et al (2000) Glomerular monocyte-macrophage features in ANCA-positive renal vasculitis and cryoglobulinemic nephritis. J Am Soc Nephrol 11:2036–2043

    CAS  PubMed  Google Scholar 

  72. Wikman A, Lundahl J, Jacobson SH (2008) Sustained monocyte activation in clinical remission of systemic vasculitis. Inflammation 31:384–390. doi:10.1007/s10753-008-9089-8

    Article  CAS  PubMed  Google Scholar 

  73. Tadema H, Abdulahad WH, Stegeman CA, Kallenberg CG, Heeringa P (2011) Increased expression of Toll-like receptors by monocytes and natural killer cells in ANCA-associated vasculitis. PLoS One 6:e24315. doi:10.1371/journal.pone.0024315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Ralston DR, Marsh CB, Lowe MP, Wewers MD (1997) Antineutrophil cytoplasmic antibodies induce monocyte IL-8 release. Role of surface proteinase-3, alpha1-antitrypsin, and Fcgamma receptors. J Clin Invest 100:1416–1424. doi:10.1172/jci119662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Ohlsson S, Hellmark T, Pieters K et al (2005) Increased monocyte transcription of the proteinase 3 gene in small vessel vasculitis. Clin Exp Immunol 141:174–182. doi:10.1111/j.1365-2249.2005.02819.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Nowack R, Schwalbe K, Flores-Suarez LF, Yard B, van der Woude FJ (2000) Upregulation of CD14 and CD18 on monocytes in vitro by antineutrophil cytoplasmic autoantibodies. J Am Soc Nephrol 11:1639–1646

    CAS  PubMed  Google Scholar 

  77. Casselman BL, Kilgore KS, Miller BF, Warren JS (1995) Antibodies to neutrophil cytoplasmic antigens induce monocyte chemoattractant protein-1 secretion from human monocytes. J Lab Clin Med 126:495–502

    CAS  PubMed  Google Scholar 

  78. Taekema-Roelvink ME, Kooten C, Kooij SV, Heemskerk E, Daha MR (2001) Proteinase 3 enhances endothelial monocyte chemoattractant protein-1 production and induces increased adhesion of neutrophils to endothelial cells by upregulating intercellular cell adhesion molecule-1. J Am Soc Nephrol 12:932–940

    CAS  PubMed  Google Scholar 

  79. Weidner S, Neupert W, Goppelt-Struebe M, Rupprecht HD (2001) Antineutrophil cytoplasmic antibodies induce human monocytes to produce oxygen radicals in vitro. Arthritis Rheum 44:1698–1706

    Article  CAS  PubMed  Google Scholar 

  80. Takahashi K, Oharaseki T, Yokouchi Y, Naoe S, Saji T (2013) Kawasaki disease: basic and pathological findings. Clin Exp Nephrol 17:690–693. doi:10.1007/s10157-012-0734-z

    Article  PubMed  Google Scholar 

  81. Lin IC, Kuo HC, Lin YJ et al (2012) Augmented TLR2 expression on monocytes in both human Kawasaki disease and a mouse model of coronary arteritis. PLoS One 7:e38635. doi:10.1371/journal.pone.0038635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Katayama K, Matsubara T, Fujiwara M, Koga M, Furukawa S (2000) CD14+ CD16+ monocyte subpopulation in Kawasaki disease. Clin Exp Immunol 121:566–570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Ichiyama T, Ueno Y, Hasegawa M et al (2005) Intravenous immunoglobulin does not increase FcgammaRIIB expression on monocytes/macrophages during acute Kawasaki disease. Rheumatology (Oxford) 44:314–317. doi:10.1093/rheumatology/keh488

    Article  CAS  Google Scholar 

  84. Ichiyama T, Yoshitomi T, Nishikawa M et al (2001) NF-kappaB activation in peripheral blood monocytes/macrophages and T cells during acute Kawasaki disease. Clin Immunol 99:373–377. doi:10.1006/clim.2001.5026

    Article  CAS  PubMed  Google Scholar 

  85. Han JW, Shimada K, Ma-Krupa W et al (2008) Vessel wall-embedded dendritic cells induce T-cell autoreactivity and initiate vascular inflammation. Circ Res 102:546–553. doi:10.1161/circresaha.107.161653

    Article  CAS  PubMed  Google Scholar 

  86. Wagner AD, Goronzy JJ, Weyand CM (1994) Functional profile of tissue-infiltrating and circulating CD68+ cells in giant cell arteritis. Evidence for two components of the disease. J Clin Invest 94:1134–1140. doi:10.1172/jci117428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Saruhan-Direskeneli G, Bicakcigil M, Yilmaz V et al (2006) Interleukin (IL)-12, IL-2, and IL-6 gene polymorphisms in Takayasu’s arteritis from Turkey. Hum Immunol 67:735–740. doi:10.1016/j.humimm.2006.06.003

    Article  CAS  PubMed  Google Scholar 

  88. Loricera J, Blanco R, Castaneda S et al (2014) Tocilizumab in refractory aortitis: study on 16 patients and literature review. Clin Exp Rheumatol 32:S79–S89

    PubMed  Google Scholar 

  89. Kim SK, Jang WC, Ahn YC et al (2012) Promoter-2518 single nucleotide polymorphism of monocyte chemoattractant protein-1 is associated with clinical severity in Behcet’s disease. Inflamm Res 61:541–545. doi:10.1007/s00011-012-0471-5

    Article  CAS  PubMed  Google Scholar 

  90. Bozoglu E, Dinc A, Erdem H et al (2005) Vascular endothelial growth factor and monocyte chemoattractant protein-1 in Behcet’s patients with venous thrombosis. Clin Exp Rheumatol 23:S42–S48

    CAS  PubMed  Google Scholar 

  91. Sahin S, Lawrence R, Direskeneli H et al (1996) Monocyte activity in Behcet’s disease. Br J Rheumatol 35:424–429

    Article  CAS  PubMed  Google Scholar 

  92. Mege JL, Dilsen N, Sanguedolce V et al (1993) Overproduction of monocyte derived tumor necrosis factor alpha, interleukin (IL) 6, IL-8 and increased neutrophil superoxide generation in Behcet’s disease. A comparative study with familial Mediterranean fever and healthy subjects. J Rheumatol 20:1544–1549

    CAS  PubMed  Google Scholar 

  93. Castrichini M, Lazzerini PE, Gamberucci A et al (2014) The purinergic P2x7 receptor is expressed on monocytes in Behcet’s disease and is modulated by TNF-alpha. Eur J Immunol 44:227–238. doi:10.1002/eji.201343353

    Article  CAS  PubMed  Google Scholar 

  94. Segerer S, Heller F, Lindenmeyer MT et al (2008) Compartment specific expression of dendritic cell markers in human glomerulonephritis. Kidney Int 74:37–46. doi:10.1038/ki.2008.99

    Article  CAS  PubMed  Google Scholar 

  95. Csernok E, Ai M, Gross WL et al (2006) Wegener autoantigen induces maturation of dendritic cells and licenses them for Th1 priming via the protease-activated receptor-2 pathway. Blood 107:4440–4448. doi:10.1182/blood-2005-05-1875

    Article  CAS  PubMed  Google Scholar 

  96. Sangaletti S, Tripodo C, Chiodoni C et al (2012) Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. Blood 120:3007–3018. doi:10.1182/blood-2012-03-416156

    Article  CAS  PubMed  Google Scholar 

  97. Clayton AR, Prue RL, Harper L, Drayson MT, Savage CO (2003) Dendritic cell uptake of human apoptotic and necrotic neutrophils inhibits CD40, CD80, and CD86 expression and reduces allogeneic T cell responses: relevance to systemic vasculitis. Arthritis Rheum 48:2362–2374. doi:10.1002/art.11130

    Article  CAS  PubMed  Google Scholar 

  98. Rimbert M, Hamidou M, Braudeau C et al (2011) Decreased numbers of blood dendritic cells and defective function of regulatory T cells in antineutrophil cytoplasmic antibody-associated vasculitis. PLoS One 6:e18734. doi:10.1371/journal.pone.0018734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Schoppet M, Pankuweit S, Maisch B (2003) CD83+ dendritic cells in inflammatory infiltrates of Churg–Strauss myocarditis. Arch Pathol Lab Med 127:98–101. doi:10.1043/0003-9985(2003)127<98:cdciii>2.0.co;2

    PubMed  Google Scholar 

  100. Wagner AD, Wittkop U, Prahst A et al (2003) Dendritic cells co-localize with activated CD4+ T cells in giant cell arteritis. Clin Exp Rheumatol 21:185–192

    CAS  PubMed  Google Scholar 

  101. Krupa WM, Dewan M, Jeon MS et al (2002) Trapping of misdirected dendritic cells in the granulomatous lesions of giant cell arteritis. Am J Pathol 161:1815–1823. doi:10.1016/s0002-9440(10)64458-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Ma-Krupa W, Jeon MS, Spoerl S et al (2004) Activation of arterial wall dendritic cells and breakdown of self-tolerance in giant cell arteritis. J Exp Med 199:173–183. doi:10.1084/jem.20030850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Weyand CM, Ma-Krupa W, Pryshchep O et al (2005) Vascular dendritic cells in giant cell arteritis. Ann N Y Acad Sci 1062:195–208. doi:10.1196/annals.1358.023

    Article  PubMed  Google Scholar 

  104. Melikoglu M, Uysal S, Krueger JG et al (2006) Characterization of the divergent wound-healing responses occurring in the pathergy reaction and normal healthy volunteers. J Immunol 177:6415–6421

    Article  CAS  PubMed  Google Scholar 

  105. Ye Z, Wang C, Kijlstra A, Zhou X, Yang P (2014) A possible role for interleukin 37 in the pathogenesis of Behcet’s disease. Curr Mol Med 14:535–542

    Article  CAS  PubMed  Google Scholar 

  106. Yilmaz S, Cinar M, Pekel A et al (2013) The expression of transmembrane and soluble CXCL16 and the relation with interferon-alpha secretion in patients with Behcet’s disease. Clin Exp Rheumatol 31:84–87

    PubMed  Google Scholar 

  107. Holmen C, Elsheikh E, Christensson M et al (2007) Anti endothelial cell autoantibodies selectively activate SAPK/JNK signalling in Wegener’s granulomatosis. J Am Soc Nephrol 18:2497–2508. doi:10.1681/asn.2006111286

    Article  CAS  PubMed  Google Scholar 

  108. Khalili-Shirazi A, Gregson NA, Londei M, Summers L, Hughes RA (1998) The distribution of CD1 molecules in inflammatory neuropathy. J Neurol Sci 158:154–163

    Article  CAS  PubMed  Google Scholar 

  109. Chauhan SK, Tripathy NK, Sinha N, Nityanand S (2006) T-cell receptor repertoire of circulating gamma delta T-cells in Takayasu’s arteritis. Clin Immunol 118:243–249. doi:10.1016/j.clim.2005.10.010

    Article  CAS  PubMed  Google Scholar 

  110. Chauhan SK, Singh M, Nityanand S (2007) Reactivity of gamma/delta T cells to human 60-kd heat-shock protein and their cytotoxicity to aortic endothelial cells in Takayasu arteritis. Arthritis Rheum 56:2798–2802. doi:10.1002/art.22801

    Article  CAS  PubMed  Google Scholar 

  111. Suzuki Y, Hoshi K, Matsuda T, Mizushima Y (1992) Increased peripheral blood gamma delta+ T cells and natural killer cells in Behcet’s disease. J Rheumatol 19:588–592

    CAS  PubMed  Google Scholar 

  112. Freysdottir J, Lau S, Fortune F (1999) Gammadelta T cells in Behcet’s disease (BD) and recurrent aphthous stomatitis (RAS). Clin Exp Immunol 118:451–457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Treusch M, Vonthein R, Baur M et al (2004) Influence of human recombinant interferon-alpha2a (rhIFN-alpha2a) on altered lymphocyte subpopulations and monocytes in Behcet’s disease. Rheumatology (Oxford) 43:1275–1282. doi:10.1093/rheumatology/keh311

    Article  CAS  Google Scholar 

  114. Bank I, Duvdevani M, Livneh A (2003) Expansion of gammadelta T-cells in Behcet’s disease: role of disease activity and microbial flora in oral ulcers. J Lab Clin Med 141:33–40. doi:10.1067/mlc.2003.1

    Article  CAS  PubMed  Google Scholar 

  115. Freysdottir J, Hussain L, Farmer I, Lau SH, Fortune F (2006) Diversity of gammadelta T cells in patients with Behcet’s disease is indicative of polyclonal activation. Oral Dis 12:271–277. doi:10.1111/j.1601-0825.2005.01185.x

    Article  CAS  PubMed  Google Scholar 

  116. Accardo-Palumbo A, Ferrante A, Cadelo M et al (2004) The level of soluble granzyme A is elevated in the plasma and in the Vgamma9/Vdelta2 T cell culture supernatants of patients with active Behcet’s disease. Clin Exp Rheumatol 22:S45–S49

    CAS  PubMed  Google Scholar 

  117. Puxeddu I, Bongiorni F, Chimenti D et al (2012) Cell surface expression of activating receptors and co-receptors on peripheral blood NK cells in systemic autoimmune diseases. Scand J Rheumatol 41:298–304. doi:10.3109/03009742.2011.648657

    Article  CAS  PubMed  Google Scholar 

  118. Tognarelli S, Gayet J, Lambert M et al (2014) Tissue-specific microvascular endothelial cells show distinct capacity to activate NK cells: implications for the pathophysiology of granulomatosis with polyangiitis. J Immunol 192:3399–3408. doi:10.4049/jimmunol.1301508

    Article  CAS  PubMed  Google Scholar 

  119. Park KS, Park JS, Nam JH et al (2007) HLA-E*0101 and HLA-G*010101 reduce the risk of Behcet’s disease. Tissue Antigens 69:139–144. doi:10.1111/j.1399-0039.2006.00742.x

    Article  CAS  PubMed  Google Scholar 

  120. Hamzaoui K, Berraies A, Kaabachi W, Ammar J, Hamzaoui A (2013) Pulmonary manifestations in Behcet disease: impaired natural killer cells activity. Multidiscip Respir Med 8:29. doi:10.1186/2049-6958-8-29

    Article  PubMed Central  PubMed  Google Scholar 

  121. Onder M, Bozkurt M, Gurer MA et al (1994) Natural cellular cytotoxicity in Behcet’s disease. J Dermatol 21:239–243

    Article  CAS  PubMed  Google Scholar 

  122. Yamaguchi Y, Takahashi H, Satoh T et al (2010) Natural killer cells control a T-helper 1 response in patients with Behcet’s disease. Arthritis Res Ther 12:R80. doi:10.1186/ar3005

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  123. Hamzaoui K, Kamoun M, Houman H et al (2006) Discrepancies of NKT cells expression in peripheral blood and in cerebrospinal fluid from Behcet’s disease. J Neuroimmunol 175:160–168. doi:10.1016/j.jneuroim.2006.02.011

    Article  CAS  PubMed  Google Scholar 

  124. Yu HG, Lee DS, Seo JM et al (2004) The number of CD8+ T cells and NKT cells increases in the aqueous humor of patients with Behcet’s uveitis. Clin Exp Immunol 137:437–443. doi:10.1111/j.1365-2249.2004.02536.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr Armen Yuri Gasparyan for his valuable inputs into the search strategy and improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durga Prasanna Misra.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, D.P., Agarwal, V. Innate immune cells in the pathogenesis of primary systemic vasculitis. Rheumatol Int 36, 169–182 (2016). https://doi.org/10.1007/s00296-015-3367-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-015-3367-1

Keywords

Navigation