Advertisement

Rheumatology International

, Volume 35, Issue 2, pp 273–280 | Cite as

Are occupational repetitive movements of the upper arm associated with rotator cuff calcific tendinopathies?

  • Valerio C. SansoneEmail author
  • Roberto Meroni
  • Paola Boria
  • Salvatore Pisani
  • Emanuele Maiorano
Original Article

Abstract

Calcifying tendinopathy (CT) of the shoulder is a common painful disorder, although the etiology and pathogenesis remain largely unknown. Recent theories about the role of excessive mechanical load in the genesis of CT have been proposed. Driven by the interest for these new theories, we investigated the hypothesis of a relationship between work-related repetitive movements of the upper arm, considered a potential cause of shoulder overload, and the presence of shoulder CT. A secondary aim was to obtain data on CT prevalence in a female sample from the working-age general population, as little data currently exist. 199 supermarket cashiers and 304 female volunteers recruited from the general population underwent a high-resolution ultrasonography of the rotator cuffs of both shoulders, and the presence of tendinopathies, with or without calcification, was recorded. The prevalence of calcific tendinopathy was 22.6 % in the cashiers group and 24.4 % in the control group. There were no statistically significant differences in the prevalence of calcifications between the two groups (p = 0.585), either for the dominant shoulder [OR = 0.841 (95 % CI 0.534–1.326)] or for the non-dominant shoulder [OR = 0.988 (95 % CI 0.582–1.326)]. We observed bilateral calcifications in 8.5 % of cashiers, and 9.6 % of controls, and an increase in prevalence of CT with age in both groups. Work-related repetitive movements of the upper arm did not induce a higher prevalence of shoulder CT compared with the female sample from the general population. If CT etiopathogenesis is related to mechanical load, CT onset may be influenced not only by loading history, but also by individual factors.

Level of evidence Prognosis study, Level II.

Keywords

Calcific tendinopathy Rotator cuff Repetitive movement Prevalence Women 

Notes

Acknowledgments

Our thanks go to Jocelyn McCleery for her assistance in the preparation of this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    DePalma AF, Kruper JS (1961) Long-term study of shoulder joints afflicted with and treated for calcific tendonitis. Clin Orthop 20:61–72PubMedGoogle Scholar
  2. 2.
    Bosworth BM (1941) Calcium deposits in the shoulder and subacromial bursitis: a survey of 12,122 shoulders. J Am Med Assoc 116:2477–2482CrossRefGoogle Scholar
  3. 3.
    Rüttimann G (1959) Über Die Haufigkeit rontenologischer Veranderungen bei Patienten mit typischer Periarthritis humeroscapularis und Schultergesunden. Inaugural dissertation. University of Zurich, Zurich, SwitzerlandGoogle Scholar
  4. 4.
    Uhthoff HK (1997) Anatomopathology of calcifying tendinitis of the cuff. In: Gazielly DF, Gleyze P, Thomas T (eds) the cuff. Elsevier, Paris, pp 144–147Google Scholar
  5. 5.
    Welfling J (1964) Les calcifications de l’épaule. Diagnostic Clinique. Rev Rhum 31:265–271Google Scholar
  6. 6.
    Sandstrom C (1938) Peridentinis calcarea: a common disease of middle life. Its diagnosis pathology and treatment. AJR 40:1–21Google Scholar
  7. 7.
    Mohr W, Bilger S (1990) Morphological basic structures of calcified tendinopathy and its importance in the pathogenesis. Z Rheumatol 49:346–355PubMedGoogle Scholar
  8. 8.
    Uhthoff HK, Loehr JW (1997) Calcific tendinopathy of the rotator cuff: pathogenesis, diagnosis and management. J Am Acad Orthop Surg 5:183–191PubMedGoogle Scholar
  9. 9.
    Benjamin M, Rufai A, Ralphs JR (2000) The mechanism of formation of bony spurs (enthesophytes) in the achilles tendon. Arthritis Rheum 43(3):576–583PubMedCrossRefGoogle Scholar
  10. 10.
    Uhthoff HK (1975) Calcifying tendinitis, an active cell-mediated calcification. Virchows Arch A Pathol Anat Histol 366(1):51–58PubMedCrossRefGoogle Scholar
  11. 11.
    Jim YF, Hsu HC, Chang CY, Wu JJ, Chang T (1993) Coexistence of calcific tendinitis and rotator cuff tear: an arthrographic study. Skeletal Radiol 22(3):183–185PubMedCrossRefGoogle Scholar
  12. 12.
    Hurt G, Baker CL Jr (2003) Calcific tendinitis of the shoulder. Orthop Clin N Am 34:567–575CrossRefGoogle Scholar
  13. 13.
    Mavrikakis ME, Drimis S, Kontoyannis DA, Rasidakis A, Moulopoulou ES, Kontoyannis S (1989) Calcific shoulder periarthritis (tendinitis) in adult onset diabetes mellitus: a controlled study. Ann Rheum Dis 48(3):211–214PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Harvie P, Pollard TC, Carr AJ (2007) Calcific tendinitis: natural history and association with endocrine disorders. J Shoulder Elbow Surg 16:169–173PubMedCrossRefGoogle Scholar
  15. 15.
    Hajiroussou VJ, Webley M (1983) Familial calcific periarthritis. Ann Rheum Dis 42:469–470PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Cannon RB, Schmid FR (1973) Calcific periarthritis involving multiple sites in identical twins. Arthritis Rheum 16:393–396PubMedCrossRefGoogle Scholar
  17. 17.
    Fong CM (2011) Calcific tendinitis of the supraspinatus tendon in a 7-year-old boy: diagnostic challenges. Hong Kong Med J 17:414–416PubMedGoogle Scholar
  18. 18.
    Bi Y, Ehirchiou D, Kilts TM et al (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13:1219–1227PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang J, Wang JH (2010) Platelet-rich plasma releasate promotes differentiation of tendon stem cells into active tenocytes. Am J Sports Med 38:2477–2486PubMedCrossRefGoogle Scholar
  20. 20.
    Rui YF, Lui PP, Chan LS, Chan KM, Fu SC, Li G (2011) Does erroneous differentiation of tendon-derived stem cells contribute to the pathogenesis of calcifying tendinopathy? Chin Med J (Engl) 124(4):606–610Google Scholar
  21. 21.
    Zhang J, Wang JH (2010) Production of PGE(2) increases in tendons subjected to repetitive mechanical loading and induces differentiation of tendon stem cells into non-tenocytes. J Orthop Res 28:198–203PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang J, Wang JH (2010) Mechanobiological response of tendon stem cells: implications of tendon homeostasis and pathogenesis of tendinopathy. J Orthop Res 28:639–643PubMedCrossRefGoogle Scholar
  23. 23.
    Baecke JAH, Burema J, Frijters ER (1982) A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr 36:936–942PubMedGoogle Scholar
  24. 24.
    Kuorinka I, Jonsson B, Lilbom A et al (1987) Standardized Nordic Questionnaire for the analysis of musculoskeletal symptoms. Appl Ergon 18:233–237PubMedCrossRefGoogle Scholar
  25. 25.
    Wang JH, Iosifidis MI, Fu FH (2006) Biomechanical basis for tendinopathy. Clin Orthop Relat Res 443:320–332PubMedCrossRefGoogle Scholar
  26. 26.
    Benjamin M (2002) Tendons are dynamic structures that respond to changes in exercise levels. Scand J Med Sci Sports 12:63–64PubMedCrossRefGoogle Scholar
  27. 27.
    Wang JH, Guo Q, Li B (2012) Tendon biomechanics and mechanobiology—a minireview of basic concepts and recent advancements. J Hand Ther 25(2):133–140PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Archer RS, Bayley JI, Archer CW, Ali SY (1993) Cell and matrix changes associated with pathological calcification of the human rotator cuff tendons. J Anat 182:1–11PubMedCentralPubMedGoogle Scholar
  29. 29.
    Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079PubMedCrossRefGoogle Scholar
  30. 30.
    Rosenthal AK, Gohr CM, Mitton E, Monnier VM, Burner T (2009) Advanced glycation end products increase transglutaminase activity in primary porcine tenocytes. J Investig Med 57:460–466PubMedGoogle Scholar
  31. 31.
    Lannersten L, Harms-Ringdahl K (1990) Neck and shoulder muscle activity during work with different cash register systems. Ergonomics 33(1):49–65PubMedCrossRefGoogle Scholar
  32. 32.
    Khan KM, Cook JL, Bonar F, Harcourt P, Astrom M (1999) Histopathology of common tendinopathies. Update and implications for clinical management. Sports Med 27:393–408PubMedCrossRefGoogle Scholar
  33. 33.
    Langberg H, Skovgaard D, Asp S, Kjaer M (2000) Time pattern of exercise-induced changes in Type I collagen turnover after prolonged endurance exercise in humans. Calcif Tissue Int 67:41–44PubMedCrossRefGoogle Scholar
  34. 34.
    Punnett L, Wegman DH (2004) Work-related musculoskeletal disorders: the epidemiologic evidence and the debate. J Electromyogr Kinesiol 14(1):13–23PubMedCrossRefGoogle Scholar
  35. 35.
    Van der Windt DA, Thomas E, Pope D et al (2000) Occupational risk factors for shoulder pain: a systematic review. Occup Environ Med 57(7):433–442PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Lundberg U, Dohns IE, Melin B et al (1999) Psychophysiological stress responses, muscle tension, and neck and shoulder pain among supermarket cashiers. J Occup Health Psychol 4(3):245–255PubMedCrossRefGoogle Scholar
  37. 37.
    Clavert P, Sirveaux F (2008) Société française d’arthroscopie: Les tendinopathies calcifiantes de l’épaule [Shoulder calcifying tendinitis]. Rev Chir Orthop Reparatrice Appar Mot 94S:S336–S355CrossRefGoogle Scholar
  38. 38.
    Kannus P, Jozsa L (1991) Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J Bone Joint Surg Am 73:1507–1525PubMedGoogle Scholar
  39. 39.
    Reilly P, Macleod I, Macfarlane R, Windley J, Emery RJ (2006) Dead men and radiologists don’t lie: a review of cadaveric and radiological studies of rotator cuff tear prevalence. Ann R Coll Surg Engl 88:116–121PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Abate M, Schiavone C, Di Carlo L, Salini V (2013) Prevalence of and risk factors for asymptomatic rotator cuff tears in postmenopausal women. Menopause. Epub ahead of print. doi: 10.1097/GME.0b013e31829638e3
  41. 41.
    Sethe S, Scutt A, Stolzing A (2006) Aging of mesenchymal stem cells. Ageing Res Rev 5:91–116PubMedCrossRefGoogle Scholar
  42. 42.
    Alt EU, Senst C, Murthy SN et al (2012) Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res 8:215–225PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Valerio C. Sansone
    • 1
    • 2
    Email author
  • Roberto Meroni
    • 3
  • Paola Boria
    • 4
  • Salvatore Pisani
    • 5
  • Emanuele Maiorano
    • 1
  1. 1.Orthopaedic DepartmentUniversità degli Studi di MilanoMilanItaly
  2. 2.Istituto Ortopedico Galeazzi IRCCSMilanItaly
  3. 3.Program in Physical Therapy, Department of Surgery and Interdisciplinary MedicineUniversity of Milano-BicoccaMilanItaly
  4. 4.Occupational MedicinePrivate PracticeMilanItaly
  5. 5.Epidemiological ObservatoryASL of VareseVareseItaly

Personalised recommendations