Rheumatology International

, Volume 34, Issue 10, pp 1361–1367 | Cite as

Effects of 12-week combined exercise therapy on oxidative stress in female fibromyalgia patients

  • Banu Sarıfakıoğlu
  • Aliye Yıldırım Güzelant
  • Eda Çelik Güzel
  • Savaş Güzel
  • Ali Rıza Kızıler
Original Article

Abstract

The aims of this study were to investigate the effect of exercise therapy on the oxidative stress in fibromyalgia patients and relationship between oxidative stress and fibromyalgia symptoms. Thirty women diagnosed with fibromyalgia according to the American College of Rheumatology preliminary criteria, and 23 healthy women whose age- and weight-matched women were enrolled the study. Pain intensity with visual analog scale (VAS), the number of tender points, the fibromyalgia impact questionnaire (FIQ), the Beck depression inventory (BDI) were evaluated. The oxidative stress parameters thiobarbituric acid reactive substances, protein carbonyls, and nitric oxide, and antioxidant parameters thiols and catalase were investigated in patients and control group. After, combined aerobic and strengthen exercise regimen was given to fibromyalgia group. Exercise therapy consisted of a warming period of 10 min, aerobic exercises period of 20 min, muscle strengthening exercises for 20 min, and 10 min cooling down period. Therapy was lasting 1 h three times per week over a 12-week period. All parameters were reevaluated after the treatment in the patient group. The oxidative stress parameters levels were significantly higher, and antioxidant parameters were significantly lower in patients with fibromyalgia than in the controls. VAS, FIQ, and BDI scores decreased significantly with exercise therapy. The exercise improved all parameters of oxidative stress and antioxidant parameters. Also, all clinical parameters were improved with exercise. We should focus on oxidative stress in the treatment for fibromyalgia with the main objective of reducing oxidative load.

Keywords

Fibromyalgia Oxidative stress Antioxidant status Exercise 

References

  1. 1.
    Goldenberg DL (1999) Fibromyalgia syndrome a decade later. What have we learned? Arch Intern Med 159:777–785PubMedCrossRefGoogle Scholar
  2. 2.
    Smith HS, Harris R, Clauw D (2011) Fibromyalgia: an afferent processing disorder leading to a complex pain generalized syndrome. Pain Physician 14:217–245Google Scholar
  3. 3.
    Bagis S, Tamer L, Sahin G, Bilgin R, Guler H, Ercan B, Erdogan C (2005) Free radicals and antioxidants in primary fibromyalgia: an oxidative stress disorder? Rheumatol Int 25:188–190PubMedCrossRefGoogle Scholar
  4. 4.
    Griep EN, Boersma JW, De Kloet ER (1993) Altered reactivity of the hypothalamic-pituitary-adrenal axis in the primary fibromyalgia syndrome. J Rheumatol 20:469–474PubMedGoogle Scholar
  5. 5.
    Altındag O, Celik H (2006) Total antioxidant capacity and the severity of the pain in patients with fibromyalgia. Redox Rep 11:131–135PubMedCrossRefGoogle Scholar
  6. 6.
    Eisinger J, Zakarian H, Pouly E, Plantamura A, Ayavou T (1996) Protein peroxidation, magnesium deficiency and fibromyalgia. Magnes Res 9:313–316PubMedGoogle Scholar
  7. 7.
    Ozgocmen S, Ozyurt H, Sogut S, Akyol O, Ardicoglu O, Yildizhan H (2006) Antioxidant status, lipid peroxidation and nitric oxide in fibromyalgia: etiologic and therapeutic concerns. Rheumatol Int 26:598–603PubMedCrossRefGoogle Scholar
  8. 8.
    Sendur OF, Turan Y, Yenisey C, Serter M (2009) Serum antioxidants and nitric oxide levels in Fibromyalgia: a controlled study. Rheumatol Int 29:629–633. doi:10.1007/s00296-008-0738-x PubMedCrossRefGoogle Scholar
  9. 9.
    Rauch SL, Shin LM, Phelps EA (2006) Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research—past, present, and future. Biol Psychiatry 60:376–382PubMedCrossRefGoogle Scholar
  10. 10.
    Seven A, Güzel S, Aslan M, Hamuryudan V (2008) Lipid, protein, DNA oxidation and antioxidant status in rheumatoid arthritis. Clin Biochem 41:538–543PubMedCrossRefGoogle Scholar
  11. 11.
    Castrogiovanni P, Imbesi R (2012) Oxidative stress and skeletal muscle in exercise. Ital J Anat Embryol 117:107–117PubMedGoogle Scholar
  12. 12.
    Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38PubMedCrossRefGoogle Scholar
  13. 13.
    Shacter E (2000) Quantification and significance of protein oxidation in biological samples. Drug Metabolism Rev 32:307–326CrossRefGoogle Scholar
  14. 14.
    Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18PubMedPubMedCentralGoogle Scholar
  15. 15.
    Dalle-Donne I, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38PubMedCrossRefGoogle Scholar
  16. 16.
    Di Mascio P, Murphy ME, Sies H (1991) Antioxidan defense system: the role of carotenoids, tocopherols, and thiols. Am J Clin Nutr 53:194–200Google Scholar
  17. 17.
    Kigwell BA (2000) Nitric oxide-mediated metabolic regulation during exercise: effect of training in health and cardiovascular disease. FASEB J 14:1685–1696CrossRefGoogle Scholar
  18. 18.
    Larson AA, Giovengo SL, Russell IJ, Michalek JE (2000) Changes in the concentrations of amino acids in the cerebrospinal fluid that correlate with pain in patients with fibromyalgia: implications for nitric oxide pathways. Pain 87:201–211PubMedCrossRefGoogle Scholar
  19. 19.
    Violi F, Marino R, Milite MT, Loffredo L (1999) Nitric oxide and its role in lipid peroxidation. Diabetes Metab Res Rev 15:283–288PubMedCrossRefGoogle Scholar
  20. 20.
    Popolo A, Autore G, Pinto A, Marzocco S (2013) Oxidative stress in patients with cardiovascular disease and chronic renal failure. Free Radic Res 47:346–356. doi:10.3109/10715762.2013.779373 PubMedCrossRefGoogle Scholar
  21. 21.
    Vasanthi P, Nalini G, Rajasekhar G (2009) Status of oxidative stress in rheumatoid arthritis. Int J Rheum Dis 12:29–33. doi:10.1111/j.1756-185X.2009.01375.x PubMedCrossRefGoogle Scholar
  22. 22.
    Fletcher DS, Widmer WR, Luell S, Christen A, Orevillo C, Shah S, Visco D (1998) Therapeutic administration of a selective inhibitor of nitric oxide synthase does not ameliorate the chronic inflammation and tissue damage associated with adjuvant-induced arthritis in rats. J Pharmacol Exp Ther 284:714–721PubMedGoogle Scholar
  23. 23.
    Taysi S, Polat F, Gul M, San RA, Bakan E (2002) Lipid peroxidation, some extracellular antioxidants, and antioxidant enzymes in serum of patients with rheumatoid arthritis. Rheumatol Int 21:200–204PubMedCrossRefGoogle Scholar
  24. 24.
    Wilson B, Spencer H, Kortebein P (2012) Exercise recommendations in patients with newly diagnosed fibrmyalgia. PM R 4:252–255PubMedCrossRefGoogle Scholar
  25. 25.
    Wolfe F, Clauw DJ, Fitzcharles MA, Goldenberg DL, Häuser W, Katz RS, Mease P, Russell AS, Russell IJ, Winfield JB (2011) Fibromyalgia criteria and severity scales for clinical and epidemiological studies: a modification of the ACR Preliminary Diagnostic Criteria for Fibromyalgia. J Rheumatol 38:1113–1122. doi:10.3899/jrheum.100594 PubMedCrossRefGoogle Scholar
  26. 26.
    Hisli N (1989) Beck Depresyon Envanterinin Geçerliği Üzerine Bir Çalışma. Psikoloji Dergisi 22(118–126):27Google Scholar
  27. 27.
    Sarmer S, Ergin S, Yavuzer G (2000) The validity and reliability of the Turkish version of the Fibromyalgia Impact Questionnaire. Rheumatol Int 20:9–12PubMedCrossRefGoogle Scholar
  28. 28.
    Beuge JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310CrossRefGoogle Scholar
  29. 29.
    Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 223:357–363CrossRefGoogle Scholar
  30. 30.
    Goth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196:143–151PubMedCrossRefGoogle Scholar
  31. 31.
    Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15 N] nitrate in biological fluids. Anal Biochem 126:131–138PubMedCrossRefGoogle Scholar
  32. 32.
    García-Martínez AM, De Paz JA, Márquez S (2012) Effects of an exercise programme on self-esteem, self-concept and quality of life in women with fibromyalgia: a randomized controlled trial. Rheumatol Int 32:1869–1876PubMedCrossRefGoogle Scholar
  33. 33.
    Hu ML, Louie S, Cross CE, Motchnik P, Halliwell B (1993) Antioxidant protectin against hypochlorous acid in human plasma. J Lab Clin Med 121:257–262PubMedGoogle Scholar
  34. 34.
    Ozgocmen S, Ozyurt H, Sogut S, Akyol O (2006) Current concepts in the pathophysiology of fibromyalgia: the potential role of oxidative stress and nitric oxide. Rheumatol Int 26:585–590PubMedCrossRefGoogle Scholar
  35. 35.
    Chung CP, Titova D, Oeser A, Randels M, Avalos I, Milne GL, Morrow JD, Stein CM (2009) Oxidative stress in fibromyalgia and its relationship to symptoms. Clin Rheumatol 28:435–438. doi:10.1007/s10067-008-1072-0 PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Eisenger J, Gandolfa C, Zakarian H, Ayavou T (1997) Reactive oxygen species, antioxidant status and fibromyalgia. J Musculoskeletal Pain 5:5–15CrossRefGoogle Scholar
  37. 37.
    Neyal M, Yimenicioglu F, Aydeniz A, Taskin A, Saglam S, Cekmen M, Neyal A, Gursoy S, Erel O, Balat A (2013) Plasma nitrite levels, total antioxidant status, total oxidant status, and oxidative stress index in patients with tension-type headache and fibromyalgia. Clin Neurol Neurosurg 115:736–740. doi:10.1016/j.clineuro.2012.08.028 PubMedCrossRefGoogle Scholar
  38. 38.
    Altindag O, Gur A, Calgan N, Soran N, Celik H, Selek S (2007) Paraoxonase and arylesterase activities in fibromyalgia. Redox Rep 12:134–138PubMedCrossRefGoogle Scholar
  39. 39.
    Wang ZQ, Porreca F, Cuzzocrea S, Galen K, Lightfoot R, Masini E, Muscoli C, Mollace V, Ndengele M, Ischiropoulos H, Salvemini D (2004) A newly identified role for superoxide in inflammatory pain. J Pharmacol Exp Ther 309:869–878PubMedCrossRefGoogle Scholar
  40. 40.
    McArdle A, Vasilaki A, Jackson M (2002) Exercise and skeletal muscle ageing: cellular and molecular mechanisms. Ageing Res Rev 1:79–93PubMedCrossRefGoogle Scholar
  41. 41.
    Peake J, Nosaka K, Suzuki K (2005) Characterization of inflammatory responses to eccentric exercise in humans. Exerc Immunol Rev 11:64–85PubMedGoogle Scholar
  42. 42.
    Ilhan N, Kamanli A, Ozmerdivenli R, Ilhan N (2004) Variable effects of exercise intensity on reduced glutathione, thiobarbituric acid reactive substance levels, and glucose concentration. Arc Med Res 35:294–300CrossRefGoogle Scholar
  43. 43.
    Aparicio VA, Carbonell-Baeza A, Ruiz JR, Aranda P, Tercedor P, Delgado-Fernández M, Ortega FB (2013) Fitness testing as a discriminative tool for the diagnosis and monitoring of fibromyalgia. Scand J Med Sci Sports 23:415–423PubMedCrossRefGoogle Scholar
  44. 44.
    Carville SF, Arendt-Nielsen S, Bliddal H, Blotman F, Buskila D, Branco JC, Da Silva JA, Danneskiold-Samsøe B, Dincer F, Henriksson C, Henriksson KG, Kosek E, Longley K, McCarthy GM, Perrot S, Puszczewicz M, Sarzi-Puttini P, Silman A, Späth M, Choy EH (2008) EULAR evidence-based recommendations for the management of fibromyalgia syndrome. Ann Rheum Dis 67:536–541PubMedCrossRefGoogle Scholar
  45. 45.
    Jeschonneck M, Grohmann G, Hein G, Sprott H (2000) Abnormal microcirculation and temperature in skin above tender points in patients with fibromyalgia. Rheumatology (Oxford) 39:917–921CrossRefGoogle Scholar
  46. 46.
    Katz DL, Greene L, Ali A, Faridi Z (2007) The pain of fibromyalgia syndrome is due to muscle hypoperfusion induced by regional vasomotor dysregulation. Med Hypotheses 69:517–525PubMedCrossRefGoogle Scholar
  47. 47.
    Imamura H, Shibuya S, Uchida K, Teshima K, Masuda R, Miyamoto N (2004) Effect of moderate exercise on excess post-exercise oxygen consumption and catecholamines in young women. J Sports Med Phys Fitness 44:23–29PubMedGoogle Scholar
  48. 48.
    Bilici M, Efe H, Koroglu MA, Uydu HA, Bekaroglu M, Deger O (2001) Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affect Disord 64:43–51PubMedCrossRefGoogle Scholar
  49. 49.
    Cipollone JVF, Falasca K, Mezzetti A, Pizzigallo E, Bucciarelli T, Laurentis SD, Avaitati G, Cesare DD, Giamberardino AD (2003) Relationship between musculoskeletal symptoms and blood markers of oxidative stress in patients with chronic fatigue syndrome. Neurosci Lett 335:151–154PubMedCrossRefGoogle Scholar
  50. 50.
    Richard EH, Kahn K (2007) Current advances in understanding the pathophysiology of Fibromyalgia. American college of Rheumatology. 71st Annual meetingGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Banu Sarıfakıoğlu
    • 1
  • Aliye Yıldırım Güzelant
    • 1
  • Eda Çelik Güzel
    • 2
  • Savaş Güzel
    • 3
  • Ali Rıza Kızıler
    • 4
  1. 1.Department of Physical Medicine and Rehabilitation, School of MedicineNamik Kemal UniversityTekirdağTurkey
  2. 2.Department of Family Medicine, School of MedicineNamik Kemal UniversityTekirdağTurkey
  3. 3.Department of Biochemistry, School of MedicineNamik Kemal UniversityTekirdağTurkey
  4. 4.Department of Biophysics, School of MedicineNamik Kemal UniversityTekirdağTurkey

Personalised recommendations