Skip to main content

Advertisement

Log in

Soluble CD163 serum levels are elevated and correlated with IL-12 and CXCL10 in patients with long-standing rheumatoid arthritis

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

CD163, a membrane glycoprotein restricted to monocyte–macrophage cell lineage, is released in the terminal phase of acute inflammation and during chronic inflammation, with anti-inflammatory and antiangiogenic role. The proteolytically detached ectodomain of CD163 is the soluble component sCD163. A few studies were performed regarding circulating sCD163 in human diseases. Only two were accomplished in patients with rheumatoid arthritis (RA). Our concern was (1) to evaluate sCD163 serum concentrations in active RA patients with long-standing evolution, (2) to correlate them with clinical parameters, laboratory markers, disease activity, and (3) to search possible relationships with some cytokines (IL-12, IL-17) and chemokine (CXCL10), involved in RA pathogenesis. First and third topics were not achieved until now, and the second one points out discordant findings and unspecified aspects. It was achieved immunoassay of serum sCD163, IL-12, IL-17, CXCL10 and traditional methods for RA laboratory markers. The mean sCD163 level of 33 patients was significantly higher than in 20 normal controls (p = 0.0001), 59.3 % of them with concentrations above normal cut-off value. sCD163 levels were weakly correlated with CRP and RF but not with ERS and disease activity. IL-12 and CXCL10 serum levels strongly correlated with sCD163 concentrations, while IL-17 positively but insignificantly correlated. In conclusion, serum sCD163 levels are significantly elevated in long-standing RA patients, but sCD163 has no role as a biomarker of disease activity. High correlation of sCD163 with IL-12 and CXCL10 suggests the association of their well-known anti-inflammatory function in long-standing RA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zwadlo G, Voegeli R, Osthoff KS, Sorg C (1987) A monoclonal antibody to a novel differentiation antigen on human macrophages associated with the down-regulatory phase of the inflammatory process. Exp Cell Biol 55:295–304

    PubMed  CAS  Google Scholar 

  2. Radzun HJ, Kreipe H, Bodewadt S, Hansmann ML, Barth J, Parwaresch MR (1987) Ki-M8 monoclonal antibody reactive with an intracytoplasmic antigen of monocyte/macrophage lineage. 69:1320–1327

  3. Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SK et al. (2001) Identification of the hemoglobin scavenger receptor. Nature 409:198–201

    Google Scholar 

  4. Moestrup SK, Moller HJ (2004) CD163: a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Ann Med 36:347–354

    Article  PubMed  CAS  Google Scholar 

  5. Onofre G, Kolackova M, Jankovicova K, Krejsek J (2009) Scavenger receptor CD163 and its biological functions. Acta Med (Hradec Kralove) 52:57–61

    CAS  Google Scholar 

  6. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    Article  PubMed  CAS  Google Scholar 

  7. Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73:209–212

    Article  PubMed  CAS  Google Scholar 

  8. Nielsen MJ, Moller HJ, Moestrup SK (2010) Hemoglobin and heme scavenger receptor. Antioxid Redox Signal 12:261–273

    Article  PubMed  CAS  Google Scholar 

  9. Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176:287–292

    Article  PubMed  CAS  Google Scholar 

  10. Sulahian TH, Hogger P, Wahner AE, Wardwell K, Goulding NJ, Sorg C et al (2000) Human monocytes express CD163, which is upregulated by IL-10 and identical to p155. Cytokine 12:1312–1321

    Article  PubMed  CAS  Google Scholar 

  11. Buechler C, Ritter M, Orso E, Langmann T, Klucken J, Schmitz G (2000) Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and anti-inflammatory stimuli. J Leukoc Biol 67:97–103

    PubMed  CAS  Google Scholar 

  12. Fabriek BO, Dijkstra CD, Van Den Berg TK (2005) The macrophage scavenger receptor CD163. Immunobiology 210:153–160

    Article  PubMed  CAS  Google Scholar 

  13. Graversen JH, Madsen M, Moestrup SK (2002) CD163: signal receptor scavenging haptoglobin-hemoglobin complexes from plasma. Int J Biochem Cell Biol 34:309–314

    Article  PubMed  CAS  Google Scholar 

  14. Philippidis P, Mason JC, Evans BJ, Nadra I, Taylor KM, Haskard DO et al (2004) Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis. Antiinflammatory monocyte-macropgage responses in vitro, in resolving skin blister in vivo, and after cardiopulmonary bypass surgery. Circ Res 23:119–126

    Article  Google Scholar 

  15. Soares MP, Marguti I, Cunha A, Larsen R (2009) Immunoregulatory effects of HO-1: how does it work? Curr Opin Pharmacol 9:482–489

    Article  PubMed  CAS  Google Scholar 

  16. Schaer CA, Vallelian F, Imhof A, Schoedon G, Schaer DJ (2008) Heme carrier protein (HCP-1) spatially interact with the CD163 hemoglobin uptake pathway and is a target of inflammatory macrophage activation. J Leukoc Biol 83:325–333

    Article  PubMed  CAS  Google Scholar 

  17. Bogdan C, Vodovotz Y, Nathan C (1991) Macrophage deactivation by interleukin 10. J Exp Med 174:1549–1555

    Article  PubMed  CAS  Google Scholar 

  18. Droste A, Sorg C, Hogger P (1999) Shedding of CD163, a novel regulatory mechanism for a member of the scavenger receptor cysteine-rich family. Biochim Biophys Res Commun 256:110–113

    Article  CAS  Google Scholar 

  19. Moller HJ, Peterslund NA, Graversen JH, Moestrup SK (2002) Identification of the haemoglobin scavenger receptor/CD163 as a natural soluble protein in plasma. Blood 99:378–380

    Article  PubMed  CAS  Google Scholar 

  20. Matsushita N, Kashiwagi M, Wait R, Nagayoshi R, Nakamura R, Matsuda T et al (2002) Elevated levels of soluble CD163 in sera and fluids from rheumatoid arthritis patients and inhibition of the shedding of CD163 by TIMP-3. Clin Exp Immunol 130:156–161

    Article  PubMed  CAS  Google Scholar 

  21. Greisen SR, Moller HJ, Stengaard-Pedersen K, Hetland ML, Horslev-Petersen K et al (2011) Soluble macrophage-derived CD163 is a marker of disease activity and is a marker of disease activity and progression in early rheumatoid arthritis. Clin Exp Rheumatol 29:689–692

    PubMed  CAS  Google Scholar 

  22. Baeten D, Moller HJ, Delanghe J, De Moestrup SK, Keyeser F (2004) Association of CD163 + macrophages and local production of soluble CD163 with decreased lymphocyte activation in spondylartropathy synovitis. Arthritis Rheum 50:1611–1623

    Article  PubMed  Google Scholar 

  23. Nakayama W, Jinin M, Makino K, Kajihara I, Makino T, Fukushima S et al. (2010) Serum level of soluble CD163 in patients with systemic sclerosis. Rheumatol Int Dec 1

  24. Arnett FC, Edworthy SM, Bloch DA, Mc Shane DJ, Fries JF, Cooper NS et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324

    Article  PubMed  CAS  Google Scholar 

  25. Zwadlo-Klarwasser G, Bent S, Haubeck HD, Sorg C, Schmutzler W (1990) Glucocorticoid-induced appearance of the macrophage RM 3/1 in peripheral blood of man. Int Arch Allergy Appl Immunol 91:175–180

    Article  PubMed  CAS  Google Scholar 

  26. Gerlag DM, Haringman JJ, Smeets TJM, Zwinderman AH, Kraan MC, Laud PJ et al (2004) Effects of oral prednisolone on biomarkers in synovial tissue and clinical improvement in rheumatoid arthritis. Arthritis Rheum 50:3783–3791

    Article  PubMed  CAS  Google Scholar 

  27. Etzerodt A, Maniecki MB, Moller K, Moller JM, Moestrup SK (2010) Tumor necrosis factor alpha-converting enzyme (TACE/ADAM 17) mediates ectodomain shedding of the scavenger receptor CD163. J Leukoc Biol 88:1201–1205

    Article  PubMed  CAS  Google Scholar 

  28. Vandooren B, Noordenbos S, Ambarus C, Krausz S, Cantaert T, Yeremenko N et al (2009) Absence of a classically activated macrophage cytokine signature in peripheral spondylarthritis, including psoriatic arthritis. Arthritis Rheum 60:966–975

    Article  PubMed  CAS  Google Scholar 

  29. Joosten LA, Lubberts E, Helsen MM, van den Berg WB (1997) Dual role of IL-12 in early and late stages of murine collagen type II arthritis. J Immunol 159:4094–4102

    PubMed  CAS  Google Scholar 

  30. Voest EE, Kenyon BM, O’Reilly MS, Truitt G, D’Amato RJ, Folkman J (1995) Inhibition of angiogenesis in vivo by interleukin 12. J Nat Cancer Inst 87:557–561

    Article  Google Scholar 

  31. Angiolillo AL, Sgadari C, Tosato G (1996) A role for the interferon-inducible protein 10 in inhibition of angiogenesis by interleukin-12. Ann NY Acad Sci 795:158–167

    Article  PubMed  CAS  Google Scholar 

  32. D’Andrea A, Aste-Amezaga M, Valiante NM, Ma X, Kubin M, Trinchieri G (1993) Interleukin-10 inhibits human lymphocyte IFN-gamma production by suppressing natural killer cell stimulatory factor/interleukin-12 synthesis in accessory cells. J Exp Med 178:1041–1048

    Article  PubMed  Google Scholar 

  33. Hoewe MA, De Savage ND, Boer T, Langenberg DM, de Vaal Malefytss R, Ottenhoff TH, Verreck FA et al (2006) Divergent effects of IL-12 and IL-23 on production of IL-17 by human T cells. Eur J Immunol 36:661–670

    Article  Google Scholar 

  34. Kwak HB, Ha H, Kim HN, Lee JH, Kim HS, Lee S et al (2008) Reciprocal cross-talk between RANKL and interferon-gamma-inducible protein 10 is responsible for bone-erosive experimental arthritis. Arthritis Rheum 58:1332–1342

    Article  PubMed  CAS  Google Scholar 

  35. Szekanecz Z, Koch AE (2009) Angiogenesis and its targeting in rheumatoid arthritis. Vascul Pharmacol 51:1–7

    Article  PubMed  CAS  Google Scholar 

  36. Fonseca JE, Edwards JCW, Blades S, Goulding NJ (2002) Macrophage subpopulation in rheumatoid synovium. Reduced CD163 expression in CD4 + T lymphocyte-rich microenvironments. Arthritis Rheum 46:1210–1216

    Article  PubMed  CAS  Google Scholar 

  37. Davis BH, Zarev PV (2005) Human monocyte CD163 expression inversely correlates with soluble CD163 plasma levels. Cytometry Clin Cytometry 63:16–22

    Article  Google Scholar 

  38. Hintz KA, Rassias AJ, Wardwell K, Moss ML, Morganelli PM, Pioli PA et al (2002) Endotoxin induces rapid metalloproteinase-mediated shedding followed by upregulation of the monocyte hemeoglobin scavenger receptor CD163. J Leukoc Biol 72:711–717

    PubMed  CAS  Google Scholar 

  39. Weaver LK, Pioli PA, Wardwell K, Vogel SN, Guyre PM (2006) Up-regulation of human monocyte CD163 upon activation of cell-surface-Toll-like receptors. J Leukoc Biol 81:663–671

    Article  PubMed  Google Scholar 

  40. Hogger P, Dreier J, Droste A, Buck F, Sorg C (1998) Identification of the integral membrane protein RM3/1 on human monocytes as a glucocorticoid-inducible member of the scavenger receptor cysteine rich family (CD163). J Immunol 161:1883–1890

    PubMed  CAS  Google Scholar 

  41. Timmermann M, Buck F, Sorg C, Hogger P (2004) Interaction of soluble CD163 with activated T lymphocytes involves its association with non-muscle myosin heavy chain type A. Immunol Cell Biol 82:479–487

    Article  PubMed  CAS  Google Scholar 

  42. Frings W, Dreier J, Sorg C (2002) Only the soluble form of the scavenger receptor CD163 acts inhibitory on phorbol ester-activated T-lymphocytes, whereas membrane-bound protein has no effect. FEBS Lett 526:93–96

    Article  PubMed  CAS  Google Scholar 

  43. Sulahian TH, Pioli PA, Wardwell K, Guyre PM (2004) Cross-linking of FcgammaR triggers shedding of the hemoglobin-haptoglobin scavenger receptor CD163. J Leukoc Biol 76:271–277

    Article  PubMed  CAS  Google Scholar 

  44. Timmermann M, Hogger P (2005) Oxidative stress and 8-iso-prostaglandin F (2 alpha) induce ectodomain shedding of CD163 and release of tumor necrosis factor-alpha from human monocytes. Free Radic Biol Med 39:98–107

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Dr. Martin Herrmann (Friederich Alexander University, Erlangen-Nurenberg, Germany) for helpful professional support, Prof. Dr. Simona Rednic (Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania) for kindly approval and Mrs. Ecaterina Piricsi for excellent secretarial contribution.

Conflict of interest

The authors declare that they have no conflict of interests and all equally contributed to this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Doru Dejica or Loredana Balacescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jude, C., Dejica, D., Samasca, G. et al. Soluble CD163 serum levels are elevated and correlated with IL-12 and CXCL10 in patients with long-standing rheumatoid arthritis. Rheumatol Int 33, 1031–1037 (2013). https://doi.org/10.1007/s00296-012-2459-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-012-2459-4

Keywords

Navigation