Rheumatology International

, Volume 33, Issue 9, pp 2399–2403 | Cite as

l-Carnitine enhances extracellular matrix synthesis in human primary chondrocytes

  • Daniela Stoppoloni
  • Laura Politi
  • Pietro Dalla Vedova
  • Masa Messano
  • Aleardo Koverech
  • Roberto Scandurra
  • Anna Scotto d’AbuscoEmail author
Short Communication


Osteoarthritis (OA) is one of the most common degenerative joint disease for which there is no cure. It is treated mainly with non-steroidal anti-inflammatory drugs to control the symptoms and some supplements, such as glucosamine and chondroitin sulphate in order to obtain structure-modifying effects. Aim of this study is to investigate the effects of l-carnitine, a molecule with a role in cellular energy metabolism, on extracellular matrix synthesis in human primary chondrocytes (HPCs). Dose-dependent effect of l-carnitine on cartilage matrix production, cell proliferation and ATP synthesis was examined by incubating HPCs with various amounts of molecule in monolayer (2D) and in hydromatrix scaffold (3D). l-Carnitine affected extracellular matrix synthesis in 3D in a dose-dependent manner; moreover, l-carnitine was very effective to stimulate cell proliferation and to induce ATP synthesis, mainly in 3D culture condition. In conclusion, l-carnitine enhances cartilage matrix glycosaminoglycan component production and cell proliferation, suggesting that this molecule could be useful in the treatment of pathologies where extracellular matrix is degraded, such as OA. To our knowledge, this is the first study where the effects of l-carnitine are evaluated in HPCs.


l-Carnitine Human primary chondrocytes Glycosaminoglycan synthesis 


  1. 1.
    Rebouche CJ (2004) Kinetics, pharmacokinetics, and regulation of l-carnitina and acetyl-l-carnitine metabolism. Ann NY Acad Sci 1033:30–41PubMedCrossRefGoogle Scholar
  2. 2.
    Chapela SP, Kriguer N, Fernández EH, Stella CA (2009) Involvement of l-carnitine in cellular metabolism: beyond Acyl-CoA transport. Mini Rev Med Chem 9:1518–1526PubMedCrossRefGoogle Scholar
  3. 3.
    Chiu KM, Keller ET, Crenshaw TD, Gravenstein S (1999) Carnitine and dehydroepiandrosterone sulfate induce protein synthesis in porcine primary osteoblast-like cells. Calcif Tissue Int 6:527–533CrossRefGoogle Scholar
  4. 4.
    Colucci S, Mori G, Vaira S, Brunetti G, Greco G, Mancini L, Simone GM, Sardelli F, Koverech A, Zallone A, Grano M (2005) l-Carnitine and isovaleryl l-carnitine fumarate positively affect human osteoblast proliferation and differentiation in vitro. Calcif Tissue Int 76:458–465PubMedCrossRefGoogle Scholar
  5. 5.
    Xie H, Tang SY, Li H, Luo XH, Yuan LQ, Wang D, Liao EY (2008) l-Carnitine protects against apoptosis of murine MC3T3-E1 osteoblastic cells. Amino Acids 35:419–423PubMedCrossRefGoogle Scholar
  6. 6.
    Bertrand J, Cromme C, Umlauf D, Frank S, Pap T (2010) Molecular mechanisms of cartilage remodelling in osteoarthritis. Int J Biochem Cell Biol 42:1594–1601PubMedCrossRefGoogle Scholar
  7. 7.
    Goldring MB, Marcu KB (2009) Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther 11:224PubMedCrossRefGoogle Scholar
  8. 8.
    Goldring MB (2006) Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best Pract Res Clin Rheumatol 20:1003–1025PubMedCrossRefGoogle Scholar
  9. 9.
    Toegel S, Wu SQ, Piana C, Unger FM, Wirth M, Goldring MB et al (2008) Comparison between chondroprotective effects of glucosamine, curcumin, and diacerein in IL-1beta-stimulated C-28/I2 chondrocytes. Osteoarthritis Cartilage 16:1205–1212PubMedCrossRefGoogle Scholar
  10. 10.
    Scotto d’Abusco A, Calamia V, Cicione C, Grigolo B, Politi L, Scandurra R (2007) Glucosamine affects intracellular signalling through inhibition of mitogen-activated protein kinase phosphorylation in human chondrocytes. Arthritis Res Ther 9:R104CrossRefGoogle Scholar
  11. 11.
    Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883:173–177PubMedCrossRefGoogle Scholar
  12. 12.
    Kim YJ, Sah RL, Doong JY, Grodzinsky AJ (1988) Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 174:168–176PubMedCrossRefGoogle Scholar
  13. 13.
    Turnbull J, Powell A, Guimond S (2001) Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell Biol 11:75–82PubMedCrossRefGoogle Scholar
  14. 14.
    Selleck SB (2000) Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics. Trends Genet 16:206–212PubMedCrossRefGoogle Scholar
  15. 15.
    David G, Bernfield M (1998) The emerging roles of cell surface heparan surface proteoglycans. Matrix Biol 17:461–463PubMedCrossRefGoogle Scholar
  16. 16.
    Johnson K, Svensson CI, Van Etten D, Ghosh SS, Murphy AN, Powell HC, Terkeltaub R (2004) Mediation of spontaneous knee osteoarthritis by progressive chondrocyte ATP depletion in Hartley guinea pigs. Arthritis Rheum 50:1216–1225PubMedCrossRefGoogle Scholar
  17. 17.
    Kim J, Xu M, Xo R, Mates A, Wilson GL, Pearsall AW 4th, Grishko V (2010) Mitochondrial DNA damage is involved in apoptosis caused by pro-inflammatory cytokines in human OA chondrocytes. Osteoarthritis Cartilage 18:424–432PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Daniela Stoppoloni
    • 1
  • Laura Politi
    • 1
  • Pietro Dalla Vedova
    • 2
  • Masa Messano
    • 3
  • Aleardo Koverech
    • 3
  • Roberto Scandurra
    • 1
  • Anna Scotto d’Abusco
    • 1
    Email author
  1. 1.Department of Biochemical SciencesSapienza University of RomaRomeItaly
  2. 2.Villa Betania Hospital, ASRMERomeItaly
  3. 3.Sigma Tau Industrie Farmaceutiche Riunite S.p.A.Pomezia, RomeItaly

Personalised recommendations