Skip to main content
Log in

Chondrogenesis from umbilical cord blood cells stimulated with BMP-2 and BMP-6

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Umbilical cord blood contains undifferentiated mesenchymal stem cells (MSCs) with chondrogenic potential that may be used for the repair of joint damage. The role of growth factors during the process of chondrogenesis is still not entirely understood. The objective of this study was to evaluate the formation of chondrocytes, cartilaginous matrix and type II collagen from human umbilical cord blood stem cells exposed to two different growth factors, BMP-6 and BMP-2, while being cultured as a micromass or a monolayer. Umbilical cord blood was obtained from full-term deliveries, and then, mononuclear cells were separated and cultured for expansion. Afterward, these cells were evaluated by flow cytometry using antibodies specific for MSCs and induced to chondrogenic differentiation in micromass and monolayer cultures supplemented with BMP-2 and BMP-6. Cellular phenotype was evaluated after 7, 14 and 21 days by RT-PCR and Western blot analysis to identify the type II collagen and aggrecan. The expanded cells displayed surface antigens characteristic of mesenchymal progenitor cells and were negative for hematopoietic differentiation antigens. Type II collagen and aggrecan mRNAs were expressed from day 14 in cells stimulated with BMP-2 or BMP-6. Type II collagen was demonstrated by Western blotting in both groups, and the greatest expression was observed 21 days after the cells were stimulated with BMP-2 cultured in micromass. BMP-2 in micromass culture was more efficient to induce the chondrogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alison MR, Poulsom R, Forbes S, Wright NA (2002) An introduction to stem cells. J Pathol 197:419–423

    Article  PubMed  Google Scholar 

  2. Bunnell BA, Deng W, Robinson CM et al (2005) Potential application for mesenchymal stem cells in the treatment of cardiovascular diseases. Can J Physiol Pharmacol 83:529–539

    Article  PubMed  CAS  Google Scholar 

  3. Cetrulo CL Jr (2006) Cord-blood mesenchymal stem cells and tissue engineering. Stem Cell Rev 2:163–168

    Article  PubMed  Google Scholar 

  4. Huang JI, Kazmi N, Durbhakula MM, Hering TM, Yoo JU, Johnstone B (2005) Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. J Orthop Res 23:1383–1389

    PubMed  CAS  Google Scholar 

  5. Pan XH, Han YB, Guo KY (2002) Pluripotential of human adult stem cells and its application in reparative and reconstructive surgery. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 16:329–332

    PubMed  Google Scholar 

  6. Yamanaka S, Li J, Kania G et al (2008) Pluripotency of embryonic stem cells. Cell Tissue Res 331:5–22

    Article  PubMed  Google Scholar 

  7. Watt FM, Hogan BL (2000) Out of eden: stem cells and their niches. Science 287:1427–1430

    Article  PubMed  CAS  Google Scholar 

  8. Bicknese AR, Goodwin HS, Quinn CO, Henderson VC, Chien SN, Wall DA (2002) Human umbilical cord blood cells can be induced to express markers for neurons and glia. Cell Transplant 11:261–264

    PubMed  Google Scholar 

  9. Goodwin HS, Bicknese AR, Chien SN, Bogucki BD, Quinn CO, Wall DA (2001) Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant 7:581–588

    Article  PubMed  CAS  Google Scholar 

  10. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675

    Article  PubMed  CAS  Google Scholar 

  11. Wang JF, Wang LJ, Wu YF et al (2004) Mesenchymal stem/progenitor cells in human umbilical cord blood as support for ex vivo expansion of cd34(+) hematopoietic stem cells and for chondrogenic differentiation. Haematologica 89:837–844

    PubMed  CAS  Google Scholar 

  12. Boskey AL, Paschalis EP, Binderman I, Doty SB (2002) Bmp-6 accelerates both chondrogenesis and mineral maturation in differentiating chick limb-bud mesenchymal cell cultures. J Cell Biochem 84:509–519

    Article  PubMed  CAS  Google Scholar 

  13. Kim DJ, Moon SH, Kim H et al (2003) Bone morphogenetic protein-2 facilitates expression of chondrogenic, not osteogenic, phenotype of human intervertebral disc cells. Spine 28:2679–2684

    Article  PubMed  Google Scholar 

  14. Longobardi L, O’Rear L, Aakula S et al (2006) Effect of igf-i in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of tgf-beta signaling. J Bone Miner Res 21:626–636

    Article  PubMed  CAS  Google Scholar 

  15. Valcourt U, Gouttenoire J, Moustakas A, Herbage D, Mallein-Gerin F (2002) Functions of transforming growth factor-beta family type i receptors and smad proteins in the hypertrophic maturation and osteoblastic differentiation of chondrocytes. J Biol Chem 277:33545–33558

    Article  PubMed  CAS  Google Scholar 

  16. Centrella M, Horowitz MC, Wozney JM, McCarthy TL (1994) Transforming growth factor-beta gene family members and bone. Endocr Rev 15:27–39

    PubMed  CAS  Google Scholar 

  17. Fukumoto T, Sperling JW, Sanyal A et al (2003) Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthr Cartil 11:55–64

    Article  PubMed  CAS  Google Scholar 

  18. Shea CM, Edgar CM, Einhorn TA, Gerstenfeld LC (2003) Bmp treatment of c3h10t1/2 mesenchymal stem cells induces both chondrogenesis and osteogenesis. J Cell Biochem 90:1112–1127

    Article  PubMed  CAS  Google Scholar 

  19. Wozney JM (1989) Bone morphogenetic proteins. Prog Growth Factor Res 1:267–280

    Article  PubMed  CAS  Google Scholar 

  20. Park Y, Sugimoto M, Watrin A, Chiquet M, Hunziker EB (2005) Bmp-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. Osteoarthr Cartil 13:527–536

    Article  PubMed  CAS  Google Scholar 

  21. Yamaguchi A, Katagiri T, Ikeda T et al (1991) Recombinant human bone morphogenetic protein-2 stimulates osteoblastic maturation and inhibits myogenic differentiation in vitro. J Cell Biol 113:681–687

    Article  PubMed  CAS  Google Scholar 

  22. Modarresi R, Lafond T, Roman-Blas JA, Danielson KG, Tuan RS, Seghatoleslami MR (2005) N-cadherin mediated distribution of beta-catenin alters map kinase and bmp-2 signaling on chondrogenesis-related gene expression. J Cell Biochem 95:53–63

    Article  PubMed  CAS  Google Scholar 

  23. Haas AR, Tuan RS (1999) Chondrogenic differentiation of murine c3h10t1/2 multipotential mesenchymal cells: Ii. Stimulation by bone morphogenetic protein-2 requires modulation of n-cadherin expression and function. Differentiation 64:77–89

    Article  PubMed  CAS  Google Scholar 

  24. Oberlender SA, Tuan RS (1994) Spatiotemporal profile of n-cadherin expression in the developing limb mesenchyme. Cell Adhes Commun 2:521–537

    Article  PubMed  CAS  Google Scholar 

  25. Oberlender SA, Tuan RS (1994) Expression and functional involvement of n-cadherin in embryonic limb chondrogenesis. Development 120:177–187

    PubMed  CAS  Google Scholar 

  26. Manca MF, Zwart I, Beo J et al (2008) Characterization of mesenchymal stromal cells derived from full-term umbilical cord blood. Cytotherapy 10:54–68

    Article  PubMed  CAS  Google Scholar 

  27. Rebelatto CK, Aguiar AM, Moretao MP et al (2008) Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med (Maywood) 233:901–913

    Article  CAS  Google Scholar 

  28. Kang XQ, Zang WJ, Bao LJ, Li DL, Xu XL, Yu XJ (2006) Differentiating characterization of human umbilical cord blood-derived mesenchymal stem cells in vitro. Cell Biol Int 30:569–575

    Article  PubMed  CAS  Google Scholar 

  29. Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242

    Article  PubMed  CAS  Google Scholar 

  30. Mara CS, Duarte AS, Sartori A, Luzo AC, Saad ST, Coimbra IB (2010) Regulation of chondrogenesis by transforming growth factor-ss3 and insulin-like growth factor-1 from human mesenchymal umbilical cord blood cells. J Rheumatol 37:1519–1526

    Article  PubMed  CAS  Google Scholar 

  31. Gutierrez-Rodriguez M, Reyes-Maldonado E, Mayani H (2000) Characterization of the adherent cells developed in dexter-type long-term cultures from human umbilical cord blood. Stem Cells 18:46–52

    Article  PubMed  CAS  Google Scholar 

  32. Mareschi K, Biasin E, Piacibello W, Aglietta M, Madon E, Fagioli F (2001) Isolation of human mesenchymal stem cells: Bone marrow versus umbilical cord blood. Haematologica 86:1099–1100

    PubMed  CAS  Google Scholar 

  33. Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM (2003) Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 121:368–374

    Article  PubMed  Google Scholar 

  34. Minguell JJ, Conget P, Erices A (2000) Biology and clinical utilization of mesenchymal progenitor cells. Braz J Med Biol Res 33:881–887

    Article  PubMed  CAS  Google Scholar 

  35. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  36. Mannello F, Tonti GA (2007) Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold! Stem Cells 25:1603–1609

    Article  PubMed  CAS  Google Scholar 

  37. Lee JW, Kim YH, Kim SH, Han SH, Hahn SB (2004) Chondrogenic differentiation of mesenchymal stem cells and its clinical applications. Yonsei Med J 45(Suppl):41–47

    PubMed  Google Scholar 

  38. Tuli R, Seghatoleslami MR, Tuli S, Howard MS, Danielson KG, Tuan RS (2002) P38 map kinase regulation of ap-2 binding in tgf-beta1-stimulated chondrogenesis of human trabecular bone-derived cells. Ann N Y Acad Sci 961:172–177

    Article  PubMed  CAS  Google Scholar 

  39. Mello MA, Tuan RS (1999) High density micromass cultures of embryonic limb bud mesenchymal cells: an in vitro model of endochondral skeletal development. In Vitro Cell Dev Biol Anim 35:262–269

    Article  PubMed  CAS  Google Scholar 

  40. Tuli R, Tuli S, Nandi S et al (2003) Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves n-cadherin and mitogen-activated protein kinase and wnt signaling cross-talk. J Biol Chem 278:41227–41236

    Article  PubMed  CAS  Google Scholar 

  41. Neumann K, Dehne T, Endres M et al (2008) Chondrogenic differentiation capacity of human mesenchymal progenitor cells derived from subchondral cortico-spongious bone. J Orthop Res 26:1449–1456

    Article  PubMed  CAS  Google Scholar 

  42. Carlberg AL, Pucci B, Rallapalli R, Tuan RS, Hall DJ (2001) Efficient chondrogenic differentiation of mesenchymal cells in micromass culture by retroviral gene transfer of bmp-2. Differentiation 67:128–138

    Article  PubMed  CAS  Google Scholar 

  43. Pan Q, Yu Y, Chen Q et al (2008) Sox9, a key transcription factor of bone morphogenetic protein-2-induced chondrogenesis, is activated through bmp pathway and a ccaat box in the proximal promoter. J Cell Physiol 217:228–241

    Article  PubMed  CAS  Google Scholar 

  44. Gitelman SE, Kobrin MS, Ye JQ, Lopez AR, Lee A, Derynck R (1994) Recombinant vgr-1/bmp-6-expressing tumors induce fibrosis and endochondral bone formation in vivo. J Cell Biol 126:1595–1609

    Article  PubMed  CAS  Google Scholar 

  45. Grimsrud CD, Romano PR, D’Souza M et al (1999) Bmp-6 is an autocrine stimulator of chondrocyte differentiation. J Bone Miner Res 14:475–482

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by CNPq (Conselho Nacional de Desenvolvimento e Pesquisa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiane Sampaio de Mara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Mara, C.S., Duarte, A.S.S., Sartori-Cintra, A.R. et al. Chondrogenesis from umbilical cord blood cells stimulated with BMP-2 and BMP-6. Rheumatol Int 33, 121–128 (2013). https://doi.org/10.1007/s00296-011-2328-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-011-2328-6

Keywords

Navigation